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Abstract. Inferring internal scattering parameters for general, hetero-
geneous materials, remains a challenging inverse problem. Its difficulty
arises from the complex way in which scattering materials interact with
light, as well as the very high dimensionality of the material space im-
plied by heterogeneity. The recent emergence of diverse computational
imaging techniques, together with the widespread availability of comput-
ing power, present a renewed opportunity for tackling this problem. We
take first steps in this direction, by deriving theoretical results, develop-
ing an algorithmic framework, and performing quantitative evaluations
for the problem of heterogeneous inverse scattering from simulated mea-
surements of different computational imaging configurations.
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1 Introduction

We consider the heterogeneous inverse scattering problem, where light can be
controllably injected and measured at the boundary of a volume, and where
we want to infer the scattering material parameters that vary internally. In
the general form that we consider, this is an extreme multi-path problem. The
volume can include parts of varying thickness, so that low-order scattering, mid-
order scattering, and high-order scattering can all contribute substantially to
the measurements; and the internal material varies spatially in terms of both
absorption and angular scattering, so that the unknown variables number in
the hundreds of thousands. Finding reliable solutions to this general problem
would extend three-dimensional imaging to many types of turbid volumes (deep
tissues, many gemstones, thick smoke and clouds) that cannot yet be accurately
measured by any non-invasive, non-destructive means.

Despite decades of work on inverse scattering, the problem has yet to be
considered at this level of generality and scale. But the growth of processing
power and the accelerating development of computational imaging techniques,
which allow unprecedented control and measurement of light at the boundary,
are making this previously-intractable problem more interesting.

The most important questions to answer about the general heterogeneous
inverse scattering problem are how to determine when a set of measurements
is sufficient to reconstruct the internal volume; what internal ambiguities exist
in the absence of sufficient measurements; and how to formulate and solve the
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massive optimization problem. While we do no provide definite answers to these
questions in this paper, we make progress in several directions.

First, we describe a mathematical model of the problem that encompasses
the types of measurements that are obtainable using almost any form of com-
putational imaging, including structured lighting, spatial probing, and transient
imaging. Second, we use this model to derive theoretical results about aspects
of internal material information that are un-recoverable, and measurement con-
figurations that can reduce internal ambiguities among the material parameters.
Third, we generalize recent optimization frameworks [14, 30], which are based
on Monte Carlo rendering and stochastic gradient descent, to accommodate our
more general material and measurement spaces. Fourth and finally, we use simu-
lations to evaluate the utility of different computational imaging configurations
for several heterogeneous inverse scattering problems. Our code and supplemen-
tary material are available at the project page [1].

2 Related Work

Inverse scattering. Inverse radiative transport is studied in graphics, physics,
chemistry, and biomedical sciences. A review can be found in [4]. Existing al-
gorithms for volumetric reconstruction of scattering materials can be roughly
classified into three categories. Methods based on the diffusion approximation
consider optically thick media where high-order scattering is dominant. This
allows for simpler inference and has been used for the acquisition of both ho-
mogeneous [28, 9, 39] and heterogemenous materials [46]. However, it also intro-
duces ambiguities between different scattering parameters [49, 51]. At the other
extreme, methods based on the single scattering approximation assume that the
unknown medium is so optically thin that all photons scatter only once. This
allows directly measuring scattering parameters of media such as smoke and
thin or dilutable liquids [20, 12, 17, 34]. A third class of methods seek to use
all orders of scattering when solving appearance matching objectives to infer
scattering parameters [42, 2, 14, 32, 30]. Our method falls in this category, by ex-
tending the algorithms of [14, 30] to apply to general heterogemenous media and
different types of imaging techniques. Orthogonal to the above are techniques
that, instead of volumetric reconstructions, recover surface-based descriptions of
scattering materials (BSSRDF), which can be spatially-varying [8, 15, 41, 10].

Computational imaging. Different imaging techniques can be categorized
as different ways to decompose photon contributions. Pathlength decomposition
techniques, also referred to as transient imaging, separate photons in terms of
the distance they travel from source to camera, and have been implemented
using combinations of pulsed lasers with ultra-fast cameras [45, 48, 47], time-of-
flight sensors [21, 29, 37, 22], and optical coherence tomography [24, 13]. Spatial
probing techniques use camera-projector systems [38, 36] or interferometry [13]
to decompose photons in terms of the endpoints of their paths. Techniques from
the two categories have been combined into imaging systems that simultaneously
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Fig. 1: (a) Photons traveling inside scattering materials perform random walks that
depend on the material parameters. (b) Computational imaging techniques capture
measurements of such materials by collecting different subsets of photons, depending
on the paths they follow. (c) We present an inverse rendering algorithm that uses such
measurements to recover the spatially-varying scattering material parameters.

decompose photons in terms of both pathlength and endpoints [37, 13]. Finally,
structured light systems can be used to separate photons based on the number of
times they bounce, into a direct (single bounce) and global (multiple bounces)
component [35, 18, 43]. With respect to inverse scattering applications, path-
length decomposition has been used together with the diffusion approximation
for measuring heterogeneous tissues [3, 5]; whereas direct-global separation has
been combined with single-scattering analysis to simplify appearance matching
problems for scattering materials [33]. In our work, we describe all these types of
decompositions in a unified theoretical framework that allows us to utilize them
for heterogeneous inverse scattering, while accounting for all orders of scattering.

3 Theoretical Background

We begin with background on the radiative transfer framework for describing
light in scattering materials. We use lower-case bold letters for points x in the
Euclidean space R3 and directions ω in the unit sphere S2. We use capital-case
bold letters for position-direction pairs X = (x,ω), and the notation x (X) and
ω (X) to refer to the position or direction component of such pairs, respectively.

We assume thatM, a subset of R3, is occupied by a scattering medium with
uniform index of refraction η, corresponding to speed of light c = co/η inside
the medium. We use ∂M for the boundary of M, and at every boundary point
x ∈ ∂M we use n̂ (x) for the outward normal vector. We also define sets Γi ={

(x,ω) ∈ ∂M× S2 : ω · n̂ (x) < 0
}

and Γo =
{

(x,ω) ∈ ∂M× S2 : ω · n̂ (x) > 0
}

of position-direction pairs on the boundary ∂M pointing in or out, respectively.

3.1 Light Transport in Scattering Media

In the radiative transfer framework, light propagation inside a scattering medium
M is described in terms of idealized light particles, often called “photons”, that
perform random walks consisting of stochastic reflection, refraction, absorption
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and scattering events. These interactions are determined by a set of material pa-
rameters, as shown in Figure 1(a): At every boundary point x ∈ ∂M, the bidirec-
tional scattering distribution function (BSDF) fs (x,ωo,ωi) controls refraction
and reflection events. At every interior point x ∈M, the medium is characterized
by the scattering parameters m (x) = {σa (x) , σs (x) , fp (x, cos θ)}. The scatter-
ing coefficient σs (x) and absorption coefficient σa (x) determine the amount of
light that is scattered or absorbed, respectively, at every scattering event. The
extinction coefficient σt (x) = σs (x)+σa (x) determines the spatial frequency of
such events. The phase function fp (x, cos θ) determines the amount of light that
scatters towards direction ωo relative to the incident direction ωi. As is usual,
we make the assumption that the phase function is cylindrically-symmetric and
invariant to rotations of ωi, and is therefore a function of only cos θ = ωi · ωo.

When a temporally-varying light source is applied at ∂M, the photon random
walks are described by the time-dependent radiative transfer equation (RTE),

1

c

∂L (x,ω, t)

∂t
+ ω · ∇L (x,ω, t) =− σt (x)L (x,ω, t)

+ σs (x)

∫
S2
fp (x,ω ·ψ)L (x,ψ, t) dψ, (1)

subject to BSDF-dependent boundary conditions on Γi and Γo [7, 25]. Note that
more common in computer vision and graphics is the stationary form of the
RTE, where radiance L is time-independent and there is no time derivative. We
discuss the relationship between the two forms in the supplement [1].

The time-dependent Green’s function Tm (Xo,Xi, t) is the solution of the
RTE at Xo ∈ Γo and time t, for an input pulse of infinitesimal duration δ (t)
and unit radiance at Xi ∈ Γi. We use the subscript m to denote explicitly
that Tm depends on the material parameters. The Green’s function can also be
defined inside the medium, but we restrict its point-direction arguments Xo,Xi

to Γo, Γi, as we assume that we can only inject and measure light at the medium’s
boundary. For the same reason, we omit volumetric sources from Equation (1).

The change of variables τ = ct converts time to (optical) pathlength. Then,
the resulting pathlength-resolved Green’s function Tm (Xo,Xi, τ) is equal to
the radiance produced by accumulating contributions only from photons that
travel paths starting at boundary point x (Xi) with direction ω (Xi), ending at
boundary point x (Xo) with direction ω (Xo), and having total length τ . The
pathlength-resolved Green’s function Tm (Xo,Xi, τ) is the continuous equiva-
lent of the pathlength-resolved light transport matrix [37, 13]. In the sequel, we
use the terms Green’s function and light transport matrix interchangeably.

3.2 Imaging Scattering Media

The measurements produced using different imaging techniques can be described
as different ways to sample the light transport matrix. Specifically, we can express
them in terms of a sampling function W : Γo × Γi × R≥0 → R≥0, as,

S (Tm,W ) ,
∫
Γo

∫
Γi

∫ ∞
0

W (Xo,Xi, τ) Tm (Xo,Xi, τ) dτ dXi dXo. (2)
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In this equation, we assume that Tm and W are regular enough to allow changing
the integration order. The sampling function W can typically be decomposed
into three components: First, an emittance function Wi : Γi → R≥0, which
is non-zero on a subset of the inward boundary Γi and describes the incident
illumination. Second, an importance function Wo : Γo → R≥0, which is non-zero
on a subset of the outward boundary Γo and corresponds to the rays accumulated
by the sensor. Third, a pathlength sampling function Wτ : R≥0 → R≥0, which is
non-zero only for a subset of pathlength values. Then,

W (Xo,Xi, τ) = Wo (Xo)Wi (Xi)Wτ (τ) . (3)

Steady-state imaging. Conventional imaging sensors measure all photons, re-
gardless of the distance they have traveled inside the medium. This corresponds
to using a pathlength sampling function Wτ (τ) = 1, for all values of τ .

Pathlength decomposition. Pathlength decomposition discriminates between
photons based on the pathlength they travel (Figure 1(b): low-saturation, short
paths versus high-saturation, long paths). Ideally, they sample pathlength slices
of the light transport matrix, Wτ (τ) = δ (τ − τc), for some τc > 0. Real systems
instead have finite pathlength resolution, with Wτ (τ) being, say, a Gaussian or a
square function. Typically, pathlength decomposition techniques densely capture
multiple such pathlength slices, each centered at a different τc.

Spatial probing. Cameras typically have multiple sensor elements (pixels) that
capture parallel sets of measurements {S (Tm,W p

o ·Wi ·Wτ ) , p = 1, . . . , P}, with
P the number of pixels. Conventionally, the measurements in such a set use differ-
ent importance functions W p

o and a common illumination Wi; but an alternative
is to use spatial probing techniques that allow different pixels on the same sensor
to capture measurements corresponding to different importance-emittance pairs,
{S (Tm,W p

o ·W
p
i ·Wτ ) , p = 1, . . . , P}. With reference to Figure 1(b), this allows

the orange and blue camera pixels to only measure photons that begin at the
orange and blue source pixels, respectively. Note that equivalent measurements
can be obtained by capturing multiple images sequentially, each time using a
different source W p

i and discarding unneeded pixels. Therefore, rather than pro-
viding a fundamentally different way to sample the light transport matrix, spatial
probing allows reducing acquisition time through temporal multiplexing.

Types of sources. It is useful to define an ideal source that emits an ideally
collimated and narrow beam, corresponding to emittance

Wi(Xi) = δ (x (Xi)− xl) δ (ω (Xi)− ωl) , (4)

for some (xl,ωl) ∈ Γi. Note that such a source cannot be realized physically:
The wave nature of light implies that a source cannot be perfectly concentrated
in both the spatial and angular domains simultaneously [16]; and any source
ideally concentrated in either domain would have zero etendue and power [6].

The utility of ideal sources lies in their convenience for analysis [4], and for
synthesizing other, more realistic sources. For instance, a perfectly collimated
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area source can be created by combining ideal sources with different xl but
sharing the same ωl. A diffuse point source is created by combining ideal sources
that share the same xl, for each ωl ∈ S2. Finally, a physical source with non-zero
spatio-angular extent Ei ⊂ Γi can be created as a weighted combination of ideal
sources for each (xl,ωl) ∈ Ei, with the weights depending on intrinsic (source
power distribution) and extrinsic (geometry) factors.

Types of cameras. Similar to the ideal source, we can define an ideal sensor
element with an importance function

Wo(Xo) = δ (x (Xo)− xs) δ (ω (Xo)− ωs) , (5)

for some (xs,ωs) ∈ Γo. Arrays of such sensors can be used to construct different
types of cameras. An orthographic camera has multiple ideal sensor elements,
each with a different xs but all sharing the same ωs. As with sources, real sensors
cannot be perfectly concentrated in either the spatial or angular domain, but can
still be expressed as weighted combinations of ideal sensor elements. Simultane-
ously using an ideal sensor, source, and pathlenth decomposition corresponds to
sampling a single value Tm ((xs,ωs) , (xl,ωl) , τc) of the light transport matrix.

4 Imaging Design

Given the range of imaging options available, we discuss theoretical results and
empirical observations that can be used to guide the design of imaging systems
for inverse scattering applications. All proofs are shown in the supplement.

Local ambiguities. In steady-state imaging, there exist similarity relations
which, under certain conditions, allow changing the scattering parameters at a
point x ∈M without changing the radiance at that point [49, 51]. We prove that
these similarity relations also hold for pathlength-decomposed measurements.

Lemma 1. Let {an,l (x, τ) , n > 0,−n ≤ l ≤ n} be the coefficients of the spherical-
harmonics expansion of the solution L (x,ω, τ) of Equation (1) at some point
x ∈ M, and {fp,n (x) , n > 0} the coefficients of the Legendre expansion of fp
at that point. If there exists N > 0 such that an,l (x, τ) = 0 for all n > N , then
two materials m, m∗ will produce equal values L (x,ω, τ) if, for 1 ≤ n ≤ N ,

σa (x) = σ∗a (x) , (6)

σs (x) (1− fp,n (x)) = σ∗s (x)
(
1− f∗p,n (x)

)
. (7)

These similarity relations are local, as they describe ambiguities at one point
x ∈M. To reduce these ambiguities, Lemma 1 suggests maximizing the angular
frequency of L (x,ω, τ) throughout the medium. For a given shape of M, the
only way to control this is through the incident illumination Wi (Xi), which
provides a lower bound to the angular frequency of L (x,ω, τ) by way of spherical
convolution with the phase function in the RTE (1) acting as a low-pass filter.
The best light sources will have high angular and spatial frequencies, such as
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Fig. 2: (a) Configuration used for Lemma 2. (b) Frontlighting allows decomposing the
inverse scattering problem into sub-problems for depth-wise layers, where at each layer
the material parameters of lower-depth layers are known. (c) Backlighting allows mea-
suring deep layers at shorter pathlengths τ , and thus higher SNR, than frontlighting.

the ideal sources of Equation (4), or collimated area sources with high-frequency
spatial profiles. These types of sources already feature prominently in previous
theoretical and empirical work [33, 15, 14].

Non-local ambiguities. On top of local ambiguities, a heterogeneous medium
can exhibit non-local ambiguities involving material parameters at different
points x. In the following, we argue that pathlength decomposition combined
with a specific input-output geometry can help reduce such non-local ambigui-
ties. For this, we consider the scene in Figure 2(a): A cubic volume is discretized
into h-sized voxels indexed by coordinates [d, p]. We call the coordinate d the
depth of a voxel, and we call the set of voxels with the same d the layer at depth
d. We assume that material parameters m [d, p] are constant within each voxel,
and that h is also the spatial and pathlength resolution at which we can image.

We use an ideal source (Equation (4)) co-located with an ideal sensor (Equa-
tion (5)). Then, the following lemma states that, assuming all material parame-
ters at layers [h, 2h, . . . , (n− 1)h] are known from previous measurements, path-
length decomposed measurements at τ = 2nh and τ = (2n+ 1)h provide linear
equations in the parameters of layer d = nh.

Lemma 2. Using pathlength decomposition, the configuration of Figure 2(a)
provides measurements of the form

Iτ =


Qτ +

∑
p∈k(n)

σs [nh, p]
π∫
0

fp ([nh, p], θ)Rτ,p (θ) dθ, τ = 2nh,

Sτ +
∑

p∈k(n)
σt [nh, p]Tτ,p, τ = (2n+ 1)h,

(8)

where k(n) is the subset of voxels in layer d = nh that are intersected by a source-
centered circle of radius nh; Qτ and Rτ,p (θ) are functions of material parameters
{m [d, p] , d < nh}; and Sτ and Tτ,p of {m [d, p] , d < nh;σs [nh, p] ; fp ([nh, p], θ)}.

Using Figure 2, we can understand the first line of Equation (8) as follows.
Measurements of the form I2nh are sums of contributions from paths of length
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τ = 2nh. All these paths are contained inside a circle of radius nh centered
at the source/sensor location. We can split the paths into two categories: those
that stay within layers [h, 2h, . . . , (n− 1)h], and those that reach layer d = nh.
Most paths fall into the first category, and their contributions are included in the
term Q. A fraction of the paths are in the second category, and when they reach
layer d = nh, their interaction is limited to a single bounce somewhere within
a particular subset of the voxels in that layer (denoted k(n) and shaded orange
in Figure 2(a)). The parts of these paths that are contained in layers d < nh
correspond to the term R in Equation (8), and their single-bounce interactions
within layer d = nh lead to linear dependence on parameters σsfp (θ). Thus,
when the materials in layers d < nh are known, the terms Q and R can be
computed; and we can build a system of linear equations in the parameters
σsfp(θ) for all voxels in layer d = nh by changing the source/sensor location
and, as discussed in the supplement, by shifting the sensor relative to the source.

Similarly, the second line of Equation (8) refers to measurements I(2n+1)h of
contributions from paths that have an odd number of steps, τ = (2n+ 1)h. As
explained in detail in the supplement, these paths may include up to two scatter-
ing events in layer d = nh, but only one that involves σt [d, p]. Therefore I(2n+1)h

will depend linearly on σt [d, p], and because the other parameters σs [d, p] and
fp ([d, p] , θ) can be separately estimated from the even-step measurements, we
can create a linear system of equations in σt for all voxels in layer d = nh by
combining odd-step measurements from different source and sensor locations.

Overall, Lemma 2 suggests a recursive, layer-wise procedure for inferring
scattering parameters from pathlength-resolved measurements (Figure 2(b)): As-
suming parameters at layers d < nh have been estimated from previous mea-
surements, use measurements of the form of I2nh and I(2n+1)h to estimate pa-
rameters at layer d = nh, through a linear system in σs [d, p] fp ([d, p] , θ) and
another linear system in σt[d, p].

Noise considerations. So far, we have shown that pathlength decomposed
measurements in a frontlighting configuration, where there source and sensor
are at the same side of the medium, helps reduce non-local ambiguities. To
complete the picture, we must also consider the signal-to-noise ratio (SNR) of
the measurements in Equation (8) as pathlength τ increases. One observation is
that their magnitude, and therefore SNR, decreases exponentially with τ due to
volumetric attenuation (see Equation (15)). Another is that, from Figure 2(a),
the ratio of the circle’s area contained in layers d < nh versus that in layer
d = nh increases with τ . This implies that the second terms in Equation (8),
which contain all information about parameters at depth d = nh, become smaller
relative to the terms Qτ , Sτ , which are independent of those parameters.

As a result of these two factors, the information available for inferring ma-
terial parameters becomes progressively worse at greater depths. One way to
ameliorate this noise is to use a supplementary backlighting configuration (Fig-
ure 2(c)), where sources and sensors are on opposite sides of the medium. These
backlighting measurements cannot be used in the recursive procedure described
above, but they can provide cleaner measurements of deeper layers.
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While these noise considerations also apply to the case of steady-state mea-
surements from frontlighting and backlighting configurations, the preceding anal-
ysis of non-local ambiguities cannot be directly extended to that case. In place
of theoretical analysis, we evaluate the relative utility of steady-state versus
pathlength-resolved measurements quantitatively: We first introduce an inverse
rendering algorithm for inferring heterogeneous scattering parameters from both
types of measurements (Section 5), then we use this algorithm to perform inverse
scattering experiments with simulated volumes and measurements (Section 6).

5 Inverse Rendering Algorithm

Measurements of the light transport matrix Tm provide information about in-
ternal scattering parameters. Given a measurement set

{
Īn, n = 1, . . . , N

}
that

is calibrated, meaning that sampling functions Wn are known, we can try to re-
cover the parameters by solving an appearance matching optimization problem,

min
π

N∑
n=1

1

2

(
Īn − S

(
Tm(π),W

n
))2

, (9)

where π is an appropriate K-dimensional parameterization of the material m (we
will be omitting the dependence on π for notational simplicity). In the following,
we introduce a framework for efficiently solving this inference problem. We do
this by extending the inverse rendering algorithms introduced in [14, 30], to apply
to any possible set of measurements from the light transport matrix Tm.

Path formulation of light transport. Section 3 describes entries of the light
transport matrix Tm and measurements S (Tm,W ) as different accumulations of
photon contributions based on their paths. This intuition has been formalized
in computer graphics and is the foundation of path-based rendering algorithms.
We can also use it to derive our inverse rendering algorithm. For notation, we
define a path x̄ as an ordered sequence of points in the medium M,

x̄ = x0 → x1 → . . .→ xB , (10)

for any finite integer B > 1. We denote the space of all such paths as P. For
each path segment xb → xb+1, we denote by ω (xb → xb+1) its direction. For
each path x̄, we denote by o (x̄) = x0 and e (x̄) = xB its origin and end, by
ωo (x̄) = ω (x0 → x1) and ωe (x̄) = −ω (xB−1 → xB) its starting and ending

directions, and by τ (x̄) =
∑B
b=1 ‖xb − xb−1‖2 its length.

Then, based on the path formulation of light transport [44, 40], every mea-
surement of the light transport matrix can be written as,

S (Tm,W ) =

∫
P
W (x̄) f̄m (x̄) dx̄, (11)

where we overload notation to make the sampling function of Equation (2) apply
to paths, based on their endpoints and length:

W (x̄) ,W ((e (x̄) ,ωe (x̄)) , (o (x̄) ,ωo (x̄)) , τ (x̄)) . (12)
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The throughput function f̄m determines the path’s radiance contribution,

f̄m (x̄) =

B−1∏
b=1

fm (xb−1 → xb → xb+1) , (13)

fm (xb−1 → xb → xb+1) = a (xb−1 → xb)σ (xb−1 → xb → xb+1) , (14)

a (xb−1 → xb) = exp
(
−
∫ xb

xb−1

σt (x) dx
)
, (15)

σ (xb−1 → xb → xb+1) ={
fs (xb−1 → xb → xb+1) , xb ∈ ∂M,

σs (xb) fp (xb,ω (xb−1 → xb) · ω (xb → xb+1)) , otherwise.
(16)

Equation (15) is the volumetric attenuation along each path segment. Equa-
tion (16) corresponds to radiance transfer as direction changes at the end of a
path segment. When xb ∈ ∂M, the direction change is due to internal reflection
at the medium boundary, and the amount of radiance transfered is determined
by the material’s BSDF. Otherwise, the direction change is due to scattering,
and the radiance transfered is determined using the local phase function. IfM is
not convex, a path may exit and re-enter the medium before reaching the sensor,
in which case the attenuation a for its corresponding segments equals 1.

Following [30], from Equation (11), we can also formulate a path-based ex-
pression for the derivative of measurements of the light transport matrix with
respect to any material parameter πk. From the product form of f̄m in Equa-
tion (13), by applying the chain rule and re-arranging terms, we have that

∂S (Tm,W )

∂πk

∣∣∣∣
π=πo

=

∫
P
W (x̄)

∂f̄m (x̄)

∂πk

∣∣∣∣
π=πo

dx̄ =

∫
P
W (x̄) f̄m (x̄) S̄m,k (x̄) dx̄, (17)

S̄m,k (x̄) ,
B−1∑
b=1

Sm,k (xb−1 → xb → xb+1) , (18)

Sm,k (xb−1 → xb → xb+1) ,
(∂fm (xb−1 → xb → xb+1) /∂πk)|π=πo

fm (xb−1 → xb → xb+1)
. (19)

In statistics, Sm,k is known as the score function of fm with respect to πk.

Monte Carlo integration. The integrals of Equation (11) and Equation (17)
can be estimated using Monte Carlo integration (Figure 3): We first use any
probability distribution µ on P to sample a set of paths {x̄j , j = 1, . . . , J};
then we form the respective unbiased estimates,

I =

J∑
j=1

W (x̄j) f̄m (x̄j)

µ (x̄j)
, Gk =

J∑
j=1

W (x̄j) f̄m (x̄j) S̄m,k (x̄j)

µ (x̄j)
. (20)

The paths {x̄j , j = 1, . . . , J} can be chosen using the sampling strategies
developed for physically accurate rendering, such as (volumetric) path trac-
ing, bidirectional path tracing, or Metropolis Light Transport [44, 40]. Because
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of the need to render individual elements of the light transport matrix (cor-
responding to the infinitesimal emittance and importance functions of Equa-
tions (4) and (5)), we use bidirectional path tracing. When rendering pathlength-
decomposed measurements, we also use the local sampling modifications of [27].
Finally, most rendering algorithms use the product form of Equation (13) to ef-
ficiently compute the term f̄m in Equation (20) recursively while tracing a path.
The same can be done for the term S̄m,k, using the sum form of Equation (18).

Stochastic optimization. We now consider the appearance matching problem
of Equation (9). Denoting by E (π) its loss function, we have for its gradient,

∂E

∂πk

∣∣∣∣
π

=

N∑
n=1

(
Īn − S (Tm,Wn)

) ∂S (Tm,Wn)

∂πk

∣∣∣∣
π

. (21)

We can estimate the gradient using the estimates of Equation (20), as

gk (π) =

N∑
n=1

(
Īn − In

)
Gnk . (22)

This estimate gk is unbiased if In and Gnk are statistically independent, which
can be achieved by rendering them using independently selected sets of paths.
Following [14], we can combine these gradient estimates with stochastic gradient
descent algorithms to solve the appearance matching problem of Equation (9).

Standard SGD uses iterations π(t+1) = π(t) − β(t)g(t), with common step
size β(t) for all unkown parameters. This converges slowly when gradient vectors
are very sparse [11]. This applies to our problem because the gradient estimate
gk for some material voxel will be zero if, during the rendering operations of
Equation (20), no sampled paths travel through the voxel. We have experimented
with a number of SGD variants that use separate, per-parameter step sizes, each
decrementing adaptively based on the magnitudes of the per-parameter gradients
in previous iterations [31, 50, 11]. We chose to use ADADELTA (Algorithm 1),
which we found empirically to have the best performance for solving (9).

Initialization. We initialize Algorithm 1 using a multi-resolution procedure,
that progressively increases the spatial resolution of material parameters. For
pathlength-resolved measurements, we also use a layer-wise recursive procedure
analogous to Figure 2(b). We discuss both procedures in the supplement.

6 Experiments

Implementation. We implemented the inverse rendering framework of Sec-
tion 5 on top of the Mitsuba physically based renderer [26]. We extended the bidi-
rectional path tracing algorithm to support spatial probing and pathlength de-
composition rendering, for both radiance and gradient estimation. The stochastic
optimization layer distributes rendering tasks involved in gradient computation
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Algorithm 1 ADADELTA.

Require: decay rate γ < 1, constant vector ε.
1: π(0) ← Initialize (), σ

(0)
g ← 0, σ

(0)
δ ← ε.

2: while not converged do

3: g(t) ← ComputeGradient
(
π(t)

)
.

4: σ
(t)
g,k ← γσ

(t−1)
g,k + (1− γ)

(
g
(t)
k

)2
.

5: δ
(t)
k ←

σ
(t−1)
δ,k

σ
(t)
g,k

g
(t)
k

6: π(t+1) ← π(t) − δ(t).
7: σ

(t)
δ,k ← γσ

(t−1)
δ,k + (1− γ)

(
δ
(t)
k

)2
.

8: end while
9: return πopt = 1

T

∑T
t=0 π

(t).

Fig. 3: Inverse rendering algorithm. Left: We use the ADADELTA variant of stochastic
gradient descent to minimize the appearance matching objective of Equation (9). Right:
We use a modified Monte Carlo rendering algorithm to compute stochastic gradient
estimates. When shading a path, we compute for each segment both the usual through-
put terms fm and the score terms Sm,k. These are accumulated to determine the path’s
contribution to the image I and its derivative Gk (Equations (13) and (18)). We re-
peat this process over many paths that are sampled to satisfy the sampling function
W corresponding to the input image measurement (Equation (12)).

(multiple parameters and measurements) across a multi-CPU cluster. We ran all
our experiments on 20-node Amazon EC2 clusters, with 36 cores per node.

Comparison of imaging configurations. We perform inverse scattering ex-
periments on synthetic volumes, to evaluate the performance of different imaging
configurations. Following Figure 2(a), we use a cubic medium of size 10 × 10 ×
10 mm3 discretized at resolution 0.4 mm, resulting in 15625 voxels. To reduce
the space of possible imaging configurations, we assume that the material pa-
rameters are characterized by a cross-section of the cube along the {d, p} plane,
remaining constant across the third dimension, corresponding to 3× 625 = 1875
unknowns. We use an imaging resolution four times that of the material grid,
corresponding to pixel size 0.1× 0.1 mm2 and pathlength resolution 0.1 mm.

We fix the medium refractive index to η = 1.3 and assume a smooth dielectric
BSDF at its boundary. We adopt the single-parameter Henyey-Greenstein model
for the phase function [23]; therefore, each material voxel is associated with
corresponding unknown values for σa, σs, and the phase function parameter g
(equal to the phase function’s first moment). We constrain σa, σs ∈ [1, 10] mm−1,
and g ∈ [0, 0.6]. We generate volumes by modeling each parameter inside the
medium as a mixture of two Gaussians of random mean and variance.

We use these volumes to compare three imaging configurations: 1) Pathlength
decomposition where, for each ideal source, we measure the radiance exiting the
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Fig. 4: Comparison of different imaging configurations. (a) Visualization of ground-
truth and reconstructed material parameters as a function of location. (b) Mean relative
reconstruction error for material parameters, averaged over multiple synthetic volumes.

volume at the opposite direction and from the same position, as well as its two
spatial neighbors. We take measurements with the ideal source placed at ev-
ery pixel on the medium boundary, including in sidelighing and backlighting
positions. 2) Steady-state imaging where, for every ideal source, we use an or-
thographic camera to measure radiance exiting from all pixels in one surface of
the cube. As before, we take measurements with the ideal source placed at every
pixel on the medium boundary, and at every position at three different orien-
tations. 3) Similar to (1), but instead of spatial shifts, we take measurements
at multiple source orientations. Each of these configurations produces 120000
measurements, or 64 measurements per unknown. When rendering simulated
measurements, we add sensor noise using [19].

In Figure 4(a), we visualize the reconstructed parameters for one of the syn-
thetic volumes. We observe that all three configurations are generally able to
reconstruct all three spatially varying parameters, σa, σs, and g, within a mean
relative error 7% and maximum relative error 15%, concentrated around areas
of high absorption. In Figure 4(b), we compare the RMS error in the estima-
tion of each parameter by each configuration, averaged across five synthetic vol-
umes. We see that, the configuration using only steady-state measurements has a
lower RMS error. We expect that this is due to the very low SNR of pathlength-
decomposition measurements corresponding to large pathlength values. We show
in Figure 4(b) the mean relative error obtained by a fourth configuration, cre-
ated by replacing measurements in configuration (1) of magnitude comparable
to the additive sensor noise, with steady-state measurements from configuration
(2) corresponding to large camera-sensor distances. We see that this combination
produces the lowest RMS error among all imaging configurations.

3D reconstruction. In Figure 5, we show volumetric reconstructions of a dense
heterogeneous smoke volume, with smoothly spatially-varying scattering param-
eters, and assuming index of refraction equal to 1. We generate our own param-
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Fig. 5: (a) Renderings of a smoke volume using ground-truth and recovered material
parameters under novel viewpoint and illumination conditions. (b) Ground-truth and
recovered parameters for a vertical cross-section through the smoke volume.

eters for the volume mesh provided by [26]. We use pathlength-resolved mea-
surements in frontlighting, sidelighting, and backlighting configurations.

Figure 5(a) compares renderings of the smoke volume using the ground-truth
and recovered material parameters under novel imaging configurations (not used
as input to the inverse rendering algorithm). In Figure 5(b), we compare ground-
truth and recovered material parameters across a cross-section of the volume.
Our algorithm accurately recovers all scattering parameters, with mean relative
error 9.31% and maximum relative error 19.73%, and the recovered parameters
can reproduce the appearance of the volume under new imaging conditions.

7 Conclusions

We have presented a theoretical and quantitative evaluation of various computa-
tional imaging techniques for the heterogeneous inverse scattering problem. Our
theoretical results provide formal justification for the use of pathlength decompo-
sition in applications requiring volumetric reconstruction of complex materials.
Additionally, our experimental results suggest there are many different imag-
ing configurations, including both steady-state and pathlength decomposition
measurements, that can enable accurate recovery of heterogeneous scattering
parameters. Our theoretical results and our optimization framework can be used
to guide the design of new acquisition systems, such as when selecting from
among various possible configurations, and when weighing practical considera-
tions, such as hardware availability, exposure time, and geometry constraints.
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