
A dynamic programming algorithm for perceptually-
consistent stereo 

Jialiang Wang 
Daniel Glasner 

and 
Todd Zickler 

TR-02-17 

Computer Science Group 
Harvard University 

Cambridge, Massachusetts 



A dynamic programming algorithm for perceptually-consistent stereo

Jialiang Wang
Harvard University

jialiangwang@g.harvard.edu

Daniel Glasner
AiCure ∗

dglasner@gmail.com

Todd Zickler
Harvard University

zickler@seas.harvard.edu

1. Introduction
This document provides details of the dynamic pro-

gramming algorithm discussed in “Towards perceptually-
consistent stereo: a scanline study” [3]. For the motivation
of the algorithm, see that paper.

2. Objective
On a horizontal scanline of a rectified pair of stereo im-

ages, we assume a discrete domain for the visual field, in-
dexed by n ∈ {1 . . . N}. For notational convenience, we
choose a flipped coordinate system, with n = 1 the right-
most pixel and n = N the left-most one. We define a small
set of spatial basis functions {Bb(n)}b=1...M and the dis-
parity at pixel n as d`(n) =

∑M
b=1 `(b)Bb(n) with shape

coefficients ` = {`(b)}b=1...M . The M -dimensional shape
space is quantified, so there are L possible choices of vector
`. Assume we have matching cost C(n, `) ∈ [0, 1] defined
at all (n, `). Suppose {si} are breakpoint locations between
1 and N , and with si−1 < si. We define a half-occlusion
function k(si, `si , `si+1

) that dictates the spatial location of
a half-occlusion boundary according to the following rule
(see the blue dashed line in Figure 1 for an example):

k(si, `si , `si+1
) ={

si + d`si (si)− d`si+1
(si), if d`si+1

(si) < d`si (si)

si, otherwise.

We want to simultaneously find the number of break-
points, the breakpoint locations {si}, and the per-segment
shape coefficients {`si} between each sequential pair of
breakpoints. Mathematically, we want to find the global
minimum of the objective function:∑

i

ρ
(
si−1, si, `si−1

, `si
)

=∑
i

(
ρc(si−1, si, `si−1

, `si) + λ1ρg(si−1, `si−1
, `si) + λ2

)
(1)

∗Most work was done when Daniel Glasner was at Harvard University

where ρc(si−1, si, `si−1
, `si) is the matching cost of seg-

ment [si−1, si), ρg(si−1, `si−1
, `si) is a boundary cost de-

fined at breakpoint si−1, and λ1, λ2 are constants.
The matching cost of a segment is the sum of the match-

ing cost over the unoccluded portion of the segment:

ρc(si−1, si, `si−1 , `si) =

si−1∑
n=k(si−1,`si−1

,`si )

C (n, `si) .

3. Optimization by dynamic programming
Let opt(u, `u) denote the scalar cost associated with

the optimal disparity sub-profile over interval [1, u] with
the constraint that the final segment, the one containing
u, has shape `u. For the first pixel we have opt(1, `) =
C(1, `) + λ2 for all `, and from there, we can visit the re-
maining pixels u ∈ {2 . . . N} in sequence, recursively com-
puting the L values of opt(u, ·) at each pixel u. For each
pair (u, `u), we search for the optimal location of the previ-
ous breakpoint v. We set v = 1 if having only one segment
is optimal for interval [1, u]. If v 6= 1, v will necessarily
be a breakpoint between the shape of the final segment `u
and a different shape, say `v , of the segment before it (see
Figure 1). Thus, we can write the recursion as

opt(u, `u) = min
Γ

(ρ(v, u, `v, `u) + opt(v, `v)) , (2)

where Γ is a subset of pairs (v, `v) within [1, u − 1] ×
[1 . . . L] that satisfy several constraints (to be discussed in
Section 4). To be able to build each valid subset Γ during
recursion, we also maintain a record of the optimal begin-
nings (the minimizers of Equation 2):

arg(u, `u) = arg min
Γ

(ρ(v, u, `v, `u) + opt(v, `v)) . (3)

This data structure has size N × L × 2. In our nota-
tion, (v, `v) = arg(u, `u) means that among all possible
sub-profiles defined on interval [1, u] with final segment
shape `u, the one with the lowest cost (and cost equal to
opt(u, `u)) is smooth over interval [v, u] and has a break-
point at v marking a transition to shape `v .



Optimal sub-profile to 

disallowed by 
half-occlusion 
constraint

disallowed 
by ordering 
constraint

Figure 1. Dynamic programming algorithm and its constraints. At each (u, `u), we recursively find the optimal location of the previous
breakpoint v and its associated model label `v by making use of the previously-computed sub-profiles for all pixels v < u. Some (v, `v)
combinations are excluded from consideration by imposing several constraints. First, (v, d`v (v)) cannot be in the green region per half-
occlusion constraint. Second, to ensure geometric ordering, we disallow (v, `v) for which the previously-computed optimal sub-profile to
(v, `v) (red line) has a leftmost breakpoint x such that (x, d`v (x)) is in the orange region (Eqn. 4).

Algorithm 1 Find optimal disparity profile (from [3])
1: for all ` ∈ [1, L] do
2: opt(1, `)← C(1, `) + λ2

3: arg(1, `)← (1, `)
4: end for
5: for u← 2 to N do
6: for `u ← 1 to L do
7: Γ← BUILDVALIDSUBSET(u, `u, arg(u, `u))
8: opt(u, `u)← min

Γ
(ρ(v, u, `v , `u) + opt(v, `v))

9: arg(u, `u)← arg min
Γ

(ρ(v, u, `v , `u) + opt(v, `v))

10: end for
11: end for
12: I, u← N . initialize trace back
13: Θ, `u ← arg min` opt(N, `)
14: while u > 1 do
15: (u, `u)← arg(u, `u)
16: APPEND(I, u)
17: APPEND(Θ, `u)
18: end while

Once the recursion terminates at pixel N , we trace the
optimal profile by using the arg data structure to accumu-
late the profile’s breakpoints and shape-transitions, from the
last one at pixel N to the first one at pixel 1. Algorithm 1
provides pseudo code (from [3]).

4. Constraints

To discuss the constraints, we first need to define two
types of breakpoints: We call a breakpoint an occluding

breakpoint if d`u(v) < d`v (v); otherwise we call it a non-
occluding one. In Figure 1, the breakpoint at v is an occlud-
ing one while the one at x is not.

There are three constraints we enforce in our algorithm.
We first introduce all three constraints in Section 4.1, and
then discuss the limitations of our “ordering constraint” in
Section 4.2.

4.1. Description of constraints

Disparity bounds. We specify a valid disparity range
[dmin, dmax], such that dmin < d`(n) < dmax. Follow-
ing this constraint, some models l are only valid at a subset
of the pixel locations.
Half-occlusion constraint. We enforce a half-occlusion
constraint which imposes a hard lower bound K on the
size of the visible portion of segments that include half-
occlusion. This type of segment occurs after all occlud-
ing breakpoints. Mathematically, this constraint is u −
k(v, `v, `u) ≥ K if d`u(v) < d`v (v). For example, the
green triangular region in Figure 1 is excluded from Γ.
Ordering constraint. As in most dynamic programming
approaches to scanline stereo, our algorithm is only made
feasible when the output preserves geometric ordering [1],
which, as shown in Figure 2, means that the ordering of
matched points is preserved between the left and the right
images. In our algorithm, we enforce this with a constraint
that is sufficient but not necessary. At an occluding break-
point, we require:



B

A

ab a b

Figure 2. An example where the geometric ordering constraint is
violated. Points AB are projected as ba in the left camera but ab
in the right camera.

v − x > d`v (x)− d`u(v) with (x, `x) = arg(v, `v) (4)

This constraint requires that the occluding segment, e.g.
segment [x, v] in Figure 1, is long enough to guarantee that
geometric ordering is preserved. It can be visualized as a
requirement on the second breakpoint x from u, and the
disparity d`v (x) at that point. For example, any (v, `v) pair
whose previous optimal breakpoint (stored in arg) falls into
the orange region in Figure 1 is excluded from Γ.

Imposing this constraint is sufficient to guarantee geo-
metric ordering. Figure 3 shows the depth planes corre-
sponding to the disparity segments with shape coefficients
`u and `v from Figure 1. V and X are the back projec-

Figure 3. The front plane (segment `v) causes half-occlusion in
the background plane (segment `u). The ordering constraint is
preserved if point V is not visible from the right camera. This
imposes a bound (Eq. 4) on the minimum projected length of the
front plane in the left camera (i.e. |xv|).

tion of breakpoints v and x in the left camera. Let d`u(v),
d`v (x) be the disparities of background pixel v and fore-
ground pixel x respectively. We know that [2],

d`u(v) = f
w

Zv
and d`v (x) = f

w

Zx
.

for focal length f and baseline w.
If point V in the scene is not visible from the right cam-

era, then geometric ordering is guaranteed. We define V ′ as
the intersection of the ray through V and a line through X
that is parallel to baseline w. From similar triangles,

|V ′X|
w

>
Zv − Zx

Zv

⇔ |V ′X| > w

(
1− Zx

Zv

)
= w

(
1− d`u(v)

d`v (x)

)
Using similar triangles again, we have,

v − x
f

=
|V ′X|
Zx

⇔ v − x = |V ′X| f
Zx

> w

(
1− d`u(v)

d`v (x)

)
d`v (x)

w

> d`v (x)− d`u(v),

of which is exactly the constraint of Equation 4.

4.2. Limitations of the ordering constraint

Our ordering constraint is sufficient but not necessary
to garantee geometric ordering. This means that there are
some profiles that do not violate geometric ordering but
could not be reconstructed by our algorithm. Figure 4 is
an example. Figure 4(a) shows the scene geometry and 4(b)
shows the disparity profile. Our constraint excludes this due
to the short segments [x, v], even though the true scene ge-
ometry does not violate geometric ordering.

Another example is Figure 5, which results from the fact
that the optimization we do is over the previous breakpoint v
instead of a joint optimization over the two previous break-
points. In this case, arg(v, `v) stores the black profile to
(v, `v) since it has the lowest cost, and the blue one is not
stored. Thus, at (u, `u), the black profile is excluded from Γ
because it violates the ordering constraint. As a result, the
algorithm selects the red profile which has a different previ-
ous breakpoint (v′, `′v) instead of the blue one, although the
blue one has lower cost and preserves geometric ordering.

Acknowledgements. This work was funded by National
Science Foundation awards IIS-1212928 and IIS-1618227.



(a)

(b)
Figure 4. An example that cannot be recovered by our algorithm
even though it does not violate the geometric ordering. (a) the
depth scene and (b) the corresponding disparity profile.

Figure 5. An example of the limitations of the ordering constraint.
The red profile is selected instead of the blue one, even though
neither one violates geometric ordering, and the blue one has lower
cost.

References
[1] H. H. Baker and T. O. Binford. Depth from edge and intensity

based stereo. In Proceedings of the 7th international joint con-

ference on Artificial intelligence-Volume 2, pages 631–636.
Morgan Kaufmann Publishers Inc., 1981.

[2] P. N. Belhumeur. A bayesian approach to binocular sterop-
sis. International Journal of Computer Vision, 19(3):237–260,
1996.

[3] J. Wang, D. Glasner, and T. Zickler. Toward perceptually-
consistent stereo: A scanline study. Proc. International Con-
ference on Computer Vision (ICCV), 2017.




