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Abstract

We propose an approach for linear unsupervised dimengipnadluction, based
on the sparse linear model that has been used to probalailigtinterpret sparse
coding. We formulate an optimization problem for learningn@ar projection
from the original signal domain to a lower-dimensional ama iwvay that approxi-
mately preserves, in expectation, pairwise inner prodadtse sparse domain. We
derive solutions to the problem, present nonlinear exterssiand discuss relations
to compressed sensing. Our experiments using facial imsgeare patches, and
images of object categories suggest that the approach gaoveour ability to
recover meaningful structure in many classes of signals.

1 Introduction

Dimensionality reduction methods are important for datalysis and processing, with their use
motivated mainly from two considerations: (1) the impreality of working with high-dimensional

spaces along with the deterioration of performance duedatinse of dimensionality; and (2) the
realization that many classes of signals reside on mauwifofdnuch lower dimension than that
of their ambient space. Linear methods in particular areefulisub-class, for both the reasons
mentioned above, and their potential utility in resourocestrained applications like low-power
sensing [1, 2]. Principal component analysis (PCA) [3]aldg preserving projections (LPP) [4],

and neighborhood preserving embedding (NPE) [5] are sommemum approaches. They seek to
reveal underlying structure using the global geometryallatistances, and local linear structure,
respectively, of the signals in their original domain; amdébeen extended in many ways [618].

On the other hand, it is commonly observed that geometratiogls between signals in their origi-
nal domain are only weakly linked to useful underlying stane. To deal with this, various feature
transforms have been proposed to map signals to differgpitélly higher-dimensional) domains,
with the hope that geometric relations in these alternatov@ains will reveal additional structure,
for example by distinguishing image variations due to clesng pose, illumination, object class,
and so on. These ideas have been incorporated into methodsrfensionality reduction by first
mapping the input signals to an alternative (higher-dirr@rad) domain and then performing di-
mensionality reduction there, for example by treating algms tensors instead of vectors [9, 10] or
using kernels [11]. In the latter case, however, it can bigcdif to design a kernel that is beneficial
for a particular signal class, and ad hoc selections arelwaya appropriate.

In this paper, we also address dimensionality reductioougin an intermediate higher-dimensional
space: we consider the case in which input signals are sarinpha an underlying dictionary model.
This generative model naturally suggests using the hiddeariate vectors as intermediate features,
and learning a linear projection (of the original domainqpproximately preserve the Euclidean ge-
ometry of these vectors. Throughout the paper, we emphagiagticular instance of this model that
is related to sparse coding, motivated by studies sugggttat data-adaptive sparse representations

10ther linear methods, most notably linear discriminant analysis (LDA)loétxclass labels to learn pro-
jections. In this paper, we focus on the unsupervised setting.



are appropriate for signals such as natural images and fawges [12, 13], and enable state-of-
the-art performance for denoising, deblurring, and cfasgion tasks [14—19].

Formally, we assume our input signal to be well-represehied sparse linear model [20], previ-
ously used for probabilistic sparse coding. Based on thieigdgive model, we formulate learning
a linear projection as an optimization problem with the otije of preservation, in expectation, of
pairwise inner products between sparse codes, withouhfawiexplicitly obtain the sparse repre-
sentation for each new sample. We study the solutions obfitimization problem, and we discuss
how they are related to techniques proposed for compressisihg. We discuss applicability of our
results to general dictionary models, and nonlinear extess Finally, by applying our method to
the visualization, clustering, and classification of fhoizages, texture patches, and general images,
we show experimentally that it improves our ability to unepuseful structure. Omitted proofs and
additional results can be found in the accompanying supghéany material.

2 Thesparselinear model

We useR” to denote the ambient space of the input signals, and as$uainesch signat ¢ R is
generated as the sum of a noise term R and a linear combination of the columns aboms, of
aN x K dictionary matrix D = [dy, . .., d], with the coefficients arranged as a veator RX,

x = Da+e. Q)

We assume the noise to be white Gaussiany N (Oy«1,0°In«y). We are interested in the
sparse linear model [20], according to which the elements @fare a-priori independent fromand
are identically and independently drawn from a Laplaceithstion,

K
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In the context of this modelD is usually overcomplete/{ > N), and in practice often learned in
an unsupervised manner from training data. Several effiaigorithms exist for dictionary learn-

ing [21-23], and we assume in our analysis that a dictioddrgdapted to the signals of interest is
given.

Our adoption of the sparse linear model is motivated by figmit empirical evidence that it is
accurate for certain signals of interest, such as natuidlifacial images [12, 13], as well as the
fact that it enables high performance for such diverse taskdenoising and inpainting [14, 24],
deblurring [15], and classification and clustering [13,18}- Typically, the model (1) with an
appropriate dictionary) is employed as a means for feature extraction, in which isfnalsz in
RY are mapped to higher-dimensional feature veatoess R% . When inferring featurea (termed
sparse codes) through maximum-a-posteriori (MAP) estimation, they so&utions to
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This problem, known as tHasso [25], is a convex relaxation of the more general problerspaf se
coding [26] (in the rest of the paper we use both terms interchariggal\ number of efficient
algorithms for computing exist, with both MAP [21, 27] and fully Bayesian [20] proceds.

3 Preservinginner products

Linear dimensionality reduction fro®" to RM, M < N, is completely specified by a projection
matrix L that maps eacke € RN toy = Lz, y € RM, and different algorithms for linear di-

mensionality reduction correspond to different methoddfifaling this matrix. Typically, we are

interested in projections that reveal useful structuregivan set of input signals.

As mentioned in the introduction, structure is often betésealed in ehigher-dimensional space

of features, say € RX. When a suitable feature transform can be found, this streichay exist

as simple Euclidean geometry and be encoded in pairwiseédeac distances or inner products
between feature vectors. This is used, for example, in stppotor machines and nearest-neighbor
classifiers based on Euclidean distance, as well-asans and spectral clustering based on pair-
wise inner products. For the problem of dimensionality iidun, this motivates learning a pro-
jection matrix L such that, for any two input samples, the inner product betweir resulting
low-dimensional representations is close to that of theiresponding high-dimensional features.



More formally, for two samples, k£ = 1,2 with corresponding low-dimensional representations
y, = Lz and feature vectoray,, we definedp = yTy, — al a, as a quantity whose magnitude
we wanton average to be small. Assuming that an accurate probabilistic geiveranodel for the
samplese and features is available, we propose learnidgby solving the optimization problem
(E denoting expectation with respect to subscripted var&gble

min Ez, 2,.a1.a0 [5p2] ) 4)
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Solving (4) may in general be a hard optimization problenpeteling on the model used fay, and
x. Here we solve it for the case of the sparse linear model dic®@e2, under which the feature
vectors are the sparse codes. Using (1) and denstingL” L, (4) becomes

2
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Assuming thate; andx- are drawn independently, we prove that (5) is equivalentablpm
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where||-|| . is the Frobenius norm, which has the closed-form solutigriguan arbitrary rotation):
L = diag (f (Awr)) Vi ()

Here Ay = (A1,..., ) isaM x 1 vector composed of th&/ largest eigenvalues of thg x N

matrix DD®, andV ,, is the N x M matrix with the corresponding eigenvectors as columns. The
function f () is applied element-wise to the vectdy, such that
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anddiag (f (Aar)) is theM x M diagonal matrix formed fronf (A,;). This solution assumes that
DD has full rankN, which in practice is almost always true Bsis overcomplete.

Through comparison with (5), we observe that (6) is a traffiéetween bringing inner products
of sparse codes and their projections close (first term), sapgpressing noise (second and third
terms). Their relative influence is controlled by the vacemfe anda, through the constants
andr respectively. It is interesting to compare their roles ihdBd (6): asr increases relative to
7, data fitting in (3) becomes less important, and (7) empkasipbise suppression. Adncreases,
l,-regularization in (3) is weighted less, and the first terrf6nmore. In the extreme case®f= 0,
the data term in (3) becomes a hard constraint, whereas ¢&y/asimplify, respectively, to
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Interestingly, in this noiseless case, an ambiguity arisebe solution of (9), as a minimizer is
obtained for any subset @ff eigenpairs and not necessarily thelargest ones.

The solution to (7) is similar—and in the noiseless case idaktto the whitening transform of
the atoms ofD. When the atoms are centered at the origin, this essenti@gnmthat solving (4)
for the sparse linear model amountspesforming PCA on dictionary atoms learned from training
samples instead of the training samples themselves. The above result can also be interpreted in the
setting of [28]: dimensionality reduction in the case of Hparse linear model with the objective
of (4) corresponds to kernel PCA using the kerBED”', modulo centering and the normalization.

3.1 Other dictionary models

Even though we have presented our results using the spaese linodel described in Section 2,
it is important to realize that our analysis is not limitedthdis model. The assumptions required
for deriving (5) are that signals are generated by a lineaiatiary model such as (1), where the
coefficients of each of the noise and code vectors are indeperand identically distributed ac-
cording to some zero-mean distribution, with the two vextalso independent from each other.
The above assumptions apply for several other popularodiaty models. Examples include the
models used implicitly by ridge and bridge regression [28] alastic-net [30], where the Laplace



prior on the code coefficients is replaced by a Gaussian, aasf the formexp(—A\ ||a|ig) and

exp(—A|lall; —v HaHg), respectively. In the context of sparse coding, other #fyarsducing priors
that have been proposed in the literature, such as Studefisgibution [31], also fall into the same
framework. We choose to emphasize the sparse linear maneéver, due to the apparent structure
present in dictionaries learned using this model, and itsigoal success in diverse applications.

It is possible to derive similar results for a more generatieloSpecifically, we make the same as-
sumptions as above, except that we only require that elenoéatbe zero-mean and not necessarily
identically distributed, and similarly far. Then, we prove that (4) becomes

min H(DTSD—I)@\/WlHi+H(SD)@\/WzHiJFHSQ\/WgHi, (10)
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where® denotes the Hadamard product a(nd'W)U = (W)ij. The elements of the weight
matricesW ;, Wy andW 3 in (10), of sizesk x K, N x K, andN x N respectively, are

(Wh),; = E [af,a3;], (Wa),; = E [e1,a3;] + E [e3,01;] , (W3),; = E [e];¢5;] - (11)
Problem (10) can still be solved efficiently, see for exanip®.

3.2 Extensiontothenonlinear case

We consider a nonlinear extension of the above analysisigitrthe use of kernels. We denote by
® : RY — 1 a mapping from the signal domain to a reproducing kernelétilbpaceH associated
with a kernel functionk : RN x RN — R [33]. UsingaseD = {d; € H,i = 1,...,K} as
dictionary, we extend the sparse linear model of Section @&placing (1) for eack: € RY with

d (z) = Da + (12)

whereDa = Zfil a;d;. Fora € RE we make the same assumptions as in the sparse linear model.

The termé denotes #&aussian process over the domaifRY whose sample paths are functionsHn
and withcovariance operator C: = o2Z, whereZ is the identity operator o [33, 34].

This nonlinear extension of the sparse linear model is vadily in finite dimensional spaceX.
In the infinite dimensional case, constructing a Gaussiangss with both sample paths#hand
identity covariance operator is not possible, as that wamldly that the identity operator ifi
has finite Hilbert-Schmidt norm [33, 34]. Related problemiseaain the construction of cylindrical
Gaussian measures on infinite dimensional spaces [35]. fiveedé¢his way to obtain a probabilistic
model for which MAP inference aof corresponds to the kernel extension of the lasso (3) [36],

1
2
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where|-||,, is the norm?# defined througtk. In the supplementary material, we discuss an alter-
native to (12) that resolves these problems by requiringahab () be in the subspace spanned
by the atoms ofD. Our results can be extended to this alternative, howevénarfollowing we
adopt (12) and limit ourselves to finite dimensional spagesnless mentioned otherwise.

Inthe kernel case, the equivalent of the projection mdir{ransposed) is a compact, linear operator
V:H — RM, that maps an elementc RY toy = V& (z) € RM. We denote by* : RM —

the adjoint ofV, and byS : H — H the self-adjoint positive semi-definite linear operatoranik

M from their synthesi&S‘ = V*V. If we consider optimizing ovef, we prove that (4) reduces to

min 4T4ZZ ((divsd;), - ) + 7% Z (8disdi) +1SIhs.  (14)

=1 i=1
where ||-|| ;¢ is the Hilbert-Schmidt norm. Assuming thﬁDD has full rank (which is almost
always true in practice due to the very large dimension ofHlieert spaces used) we extend the
representer theorem of [37] to prove that all solutions df @@an be written in the form
S =(DB)® (DB), (15)

where® denotes the tensor product between all pairs of elements @péerands, anB is a K x M
matrix. Then, denoting) = BB, problem (14) becomes

1 2 1 1 2
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Figure 1:Two-dimensional projection of CMU PIE dataset, colored by identity. Shathigh resolution and
at their respective projections are identity-averaged faces acrosathget for various illuminations, poses,
and expressions. Insets show projections of samples from only twodisténtities. (Best viewed in color.)

whereK pp (i,7) = (di,d;)3, i,5 = 1,..., K. We can replacd = BTK%JD to turn (16) into an
equivalent problem ovek of the form (6), withK 7, , instead ofD, and thus use (8) to obtain
B = V]W diag (g ()\]\4)) (17)

where, similar to the linear cask;, andV ,, are theM largest eigenpairs of the matriX »p, and
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Using the derived solution, a vecter € RN is mapped toy = BT Kp (z), where K p (x) =
[(dy, ® (x))%, ..., {dy,® (x))4]T. Asinthe linear case, this is similar to the result of appdyi

kernel PCA on the dictionarf instead of the training samples. Note that, in the noisadass,

o = 0, the above analysis is also valid for infinite dimensionalcgsH. Expression (17) simplifies
to B = V), diag (AM)_1 where, as in the linear case, any subset/ogéigenvalues may be selected.
Even though in the infinite dimensional case selectingithiargest eigenvalues cannot be justified
probabilistically, it is a reasonable heuristic given thelgsis in the finite dimensional case.

3.3 Computational considerations

It is interesting to compare the proposed method in the neali case with kernel PCA, in terms of
computational and memory requirements. If we require @ity atoms to have pre-imagesRr
thatisD = {® (d;) ,d; € RY,i =1,..., K} [36], then the proposed algorithm requires calculating
and decomposing th& x K kernel matrix K pp when learning), and performingK kernel
evaluations for projecting a new sampieFor kernel PCA on the other hand, the S matrix K y y
andsS kernel evaluations are needed respectively, whére {<I> (), 7, e RN i=1,... ,S} and

x; are the representations of the training sampleR invith S > K. If the pre-image constraint is
dropped and the usual alternating procedure [21] is usdddoningD, then the representer theorem
of [38] implies thatD = X' F', whereF' is anS x K matrix. In this case, the proposed method also
requires calculatind< y » during learning and kernel evaluations for out-of-sample projections,
but only the eigendecomposition of tfé x K matrix F* K2 . F is required.

On the other hand, we have assumed so far, in both the lindan@minear cases, that a dictionary
is given. When this is not true, we need to take into accountct®t of learning a dictionary,
which greatly outweights the computational savings descriabove, despite advances in dictionary
learning algorithms [21, 22]. In the kernel case, wheregsosing the pre-image constraint has
the advantages we mentioned, it also makes dictionary ifeguan harder nonlinear optimization
problem, due to the need for evaluation of kernel derivativia the linear case, the computational
savings from applying (linear) PCA to the dictionary inste# the training samples are usually
negligible, and therefore the difference in required cotafion becomes even more severe.
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Figure 2: Classification accuracy results. From left to right: CMU PIE (varying @adfiA/); CMU PIE
(varying number of training samples); brodatz texture patches; Cali@th(Best viewed in color.)
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4 Experimental validation

In order to evaluate our proposed method, we compare it wiiteraunsupervised dimensionality
reduction methods on visualization, clustering, and diaasion tasks. We use facial images in the
linear case, and texture patches and images of object categothe kernel case.

Facial images: We use the CMU PIE [39] benchmark dataset of faces under ploseination and
expression changes, and specifically the subset used 4nVi@] visualize the dataset by projecting
all face samples td/ = 2 dimensions using LPP and the proposed method, as shownuneFlg
Also shown are identity-averaged faces over the datagetafmus illumination, pose, and expres-
sion combinations, at the location of their projection. Vserve that our method recovers a very
clear geometric structure, with changes in illuminatiomresponding to an ellipsoid, changes in
pose to moving towards its interior, and changes in expvasaccounting for the density on the
horizontal axis. We separately show the projections of $esnfpom two distinct indviduals, and
see that different identities are mapped to parallely stii#tllipsoids, easily separated by a nearest-
neighbor classifier. On the other hand, such structure isapparent when using LPP. A larger
version of Figure 1 and the corresponding for PCA are praVidehe supplementary material.

To assess how well identity structure is recovered for iasirgg values of the target dimension
M, we also perform face recognition experiments. We compgaénat three baseline methods,
PCA, NPE, and LPP, linear extensions (spectral regresssé®®LPP” [7], spatially smooth LPP
“SmoothLPP” [8]), and random projections (see Section 5)e Mbduce 20 random splits into
training and testing sets, learn a dictionary and projeatiatrices from the training set, and use the
obtained low-dimensional representations wittriaearest neighbor classifiér & 4) to classify the
test samples, as is common in the literature. In Figure 2 hee/she average recognition accuracy
for the various methods as the number of projections is dakden using 100 training samples
for each of the 68 individuals in the dataset. Also, we coraphe proposed method with the best
performing alternative, when the number of training sammpler individual is varied from 40 to 120.
We observe that the proposed method outperforms all otharveigle margin, in many cases even
when trained with fewer samples. However, it can only be wskédn there are enough training
samples to learn a dictionary, a limitation that does notyafapthe other methods. For this reason,
we do not experiment with cases of 5-20 samples per indiidgsacommonly done in the literature.

Texture patches: We perform classification experiments on texture patchsmguthe Brodatz
dataset [40], and specifically classes 4, 5, 8, 12, 17, 84,92nflom the 2-texture images. We
extractl2 x 12 patches and use those from the training images to learmdaries and projections
for the Gaussian kernélWe classify the low-dimensional representations usingrame@rsus-all
linear SVM. In Figure 2, we compare the classification accyid the proposed method (“ker.dict”)
with the kernel variants of PCA and LPP (“KPCA’ and “KLPP” pextively), for varyingh/. KLPP
and the proposed method both outperform KPCA. Our metho@eeh much higher accuracy at
small values of\/, and KLPP is better for large values; otherwise they perfsirmilarly.

This dataset provides an illustrative example for the dismn in Section 3.3. For 20000 training
samples, KPCA and KLPP require storing and process#i)@0 x 20000 kernel matrix, as opposed
to 512 x 512 for our method. On the other hand, training a dictionary wviith= 512 for this dataset

takes approximately 2 hours, on an 8 core machine and usirg-aniplementation of the learning
algorithm, as opposed to the few minutes required for therelgcompositions in KPCA and KLPP.

2Images are pre-normalized to unit length. We use the algorithm of [214ta Eictionaries, with equal

to the number of pixel&v = 1024, due to the limited amount of training data, ake= "72 =0.05asin [19].
SFollowing [36], we set the kernel parameter= 8, and use their method for dictionary learning with
K =512 andX = 0.30, but with a conjugate gradient optimizer for the dictionary update step.



Method Accuracy | NMI Rand Index
KPCA (k-means) 0.6217 | 0.6380 0.4279
KLPP (spectral clustering) 0.6900 | 0.6788 0.5143
ker.dict (c-means) 0.7233 | 0.7188 0.5275

Table 1:Clustering results on Caltech-101.

Images of object categories. We use the Caltech-101 [41] object recognition datasety e
average of the 39 kernels used in [42]. Firstly, we use 3@itrgisamples from each class to learn a
dictionary* and projections using KPCA, KLPP, and the proposed metho#idure 2, we plot the
classification accuracy achieved using a linear SVM for eaethod and varying/. We see that
the proposed method and KPCA perform similarly and outparfdLPP. Our algorithm performs
consistently well in both the datasets we experiment witthékernel case.

We also perform unsupervised clustering experiments, eviverrandomly select 30 samples from
each of the 20 classes used in [43] to learn projections wighthree methods, over a range of
values forM between 10 and 150. We combine each with three clusterirggitdgs, k-means,
spectral clustering [44], and affinity propagation [43]ifsnegative Euclidean distances of the
low-dimensional representations as similarities). Inldah we report for each method the best
overall result in terms of accuracy, normalized mutual infation, and rand index [45], along with
the clustering algorithm for which these are achieved. We=poke that the low-dimensional repre-
sentations from the proposed method produce the bestyjakigterings, for all three measures.

5 Discussion and futuredirections

As we remarked in Section 3, the proposed method uses aesitaining samples to lear® and
ignores them afterwards, relying exclusively on the assligenerative model and the correlation
information inD. To see how this approach could fail, consider the degemeeste whetD is the
identity matrix, that is the signal and sparse domains éd&cThen, to discover structure we need
to directly examine the training samples. Better use of thiming samples within our framework
can be made by adopting a richer probabilistic model, usimilable data to train it, naturally
with appropriate regularization to avoid overfitting, ahén minimizing (4) for the learned model.
For example, we can use the more general model of Sectiomaiddlassume that eaehfollows a
Laplace distribution with a different. Doing so agrees with empirical observations that, wheis
learned, the average magnitude of coefficientgries significantly withi. An orthogonal approach
is to forgo adopting a generative model, and learn a prajectiatrix directly from training samples
using an appropriatempirical loss function. One possibility is minimizifgd” A— X" LT LX ||7,,
where the columns oK and A are the training samples and corresponding sparse codeagss),
which is an instance of multidimensional scaling [46] (agified to achieve linear induction).

For the sparse linear model case, objective function (8léed to thdrestricted | sometry Property
(RIP) [47], used in the compressed sensing literature asditbon enabling reconstruction of a
sparse vectoa € R¥ from linear measurements ¢ R whenM < K. The RIP is a worst-
case condition, requiring approximate preservation, @ ldw-dimensional domain, of pairwise
Euclidean distances of all, and therefore stronger than the expectation condition \&yifying
the RIP for an arbitrary matrix is a hard problem, but it is wmnao hold for theequivalent dictio-
nary D = LD with high probability, if L is drawn from certain random distributions, ahfl is
of the order of onlyO (klog %) [48]. Despite this property, our experiments demonstriast &
learned matrixL is in practice more useful than random projections (seeofdfigure 2). The for-
mal guarantees that preservation of Euclidean geometrgarée codes is possible with few linear
projections are unique for the sparse linear model, thubduijustifying our choice to emphasize
this model throughout the paper.

Another quantity used in compressed sensing isriliteal coherence of D [49], and its approximate
minimization has been proposed as a way for leardirfgr signal reconstruction [50,51]. One of
the optimization problems arrived at in this context [51{lie same as problem (9) we derived in
the noiseless case, the solution of which as we mentioneédtid® 3 is not unique. This ambiguity
has been addressed heuristically by weighting the obgfitivction with appropriate multiplicative
terms, so thatitbecomédd —AV ' LY LV A ||3,, whereA andV are eigenpairs ab D" [51]. This

“We use a kernel extension of the algorithm of [21] without pre-imagestcaimts. We seleck = 300
and\ = 0.1 from a range of values, to achieve about 10% non-zero coefficietitg isparse codes and small
reconstruction error for the training samples. Uskig= 150 or 600 affected accuracy by less than 1.5%.



problem admits as only minimizer the one correspondingadihargest eigenvalues. Our analysis
addresses the above issue naturally by incorporating nihise providing formal justification for
the heuristic. Also, the closed-form solution of (9) is nbbwn in [51], though its existence is
mentioned, and the (weighted) problem is instead solvexuiiit an iterative procedure.

In Section 3, we motivated preserving inner products in t{rerse domain by considering exist-
ing algorithms that employ sparse codes. As our undersigmafi sparse coding continues to im-
prove [52], there is motivation for considering other stane inR” . Possibilities include preserva-
tion of linear subspace (as determined by the support ofghese codes) or local group relations
in the sparse domain. Extending our analysis to also incatpsupervision is another important
future direction.

Linear dimensionality reduction has traditionally beeedi$or data preprocessing and visualiza-
tion, but we are also beginning to see its utility for low-pavgensors. A sensor can be designed to
record linear projections of an input signal, instead ofdigaal itself, with projections implemented
through a low-power physical process like optical filterilg these cases, methods like the ones
proposed in this paper can be used to obtain a small numberfaative projections, thereby
reducing the power and size of the sensor while maintairt;gffectiveness for tasks like recog-
nition. An example for visual sensing is described in [2],enda heuristically-modified version
of our linear approach is employed to select projectionddoe detection. Rigorously extending
our analysis to this domain will require accounting for mogd constraints on the projections (for
example non-negativity, limited resolution) induced bjriaation processes. We view this as a
research direction worth pursuing.
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