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Abstract

We propose an approach for linear unsupervised dimensionality reduction, based
on the sparse linear model that has been used to probabilistically interpret sparse
coding. We formulate an optimization problem for learning alinear projection
from the original signal domain to a lower-dimensional one in a way that approxi-
mately preserves, in expectation, pairwise inner productsin the sparse domain. We
derive solutions to the problem, present nonlinear extensions, and discuss relations
to compressed sensing. Our experiments using facial images, texture patches, and
images of object categories suggest that the approach can improve our ability to
recover meaningful structure in many classes of signals.

1 Introduction
Dimensionality reduction methods are important for data analysis and processing, with their use
motivated mainly from two considerations: (1) the impracticality of working with high-dimensional
spaces along with the deterioration of performance due to the curse of dimensionality; and (2) the
realization that many classes of signals reside on manifolds of much lower dimension than that
of their ambient space. Linear methods in particular are a useful sub-class, for both the reasons
mentioned above, and their potential utility in resource-constrained applications like low-power
sensing [1, 2]. Principal component analysis (PCA) [3], locality preserving projections (LPP) [4],
and neighborhood preserving embedding (NPE) [5] are some common approaches. They seek to
reveal underlying structure using the global geometry, local distances, and local linear structure,
respectively, of the signals in their original domain; and have been extended in many ways [6–8].1

On the other hand, it is commonly observed that geometric relations between signals in their origi-
nal domain are only weakly linked to useful underlying structure. To deal with this, various feature
transforms have been proposed to map signals to different (typically higher-dimensional) domains,
with the hope that geometric relations in these alternativedomains will reveal additional structure,
for example by distinguishing image variations due to changes in pose, illumination, object class,
and so on. These ideas have been incorporated into methods for dimensionality reduction by first
mapping the input signals to an alternative (higher-dimensional) domain and then performing di-
mensionality reduction there, for example by treating signals as tensors instead of vectors [9,10] or
using kernels [11]. In the latter case, however, it can be difficult to design a kernel that is beneficial
for a particular signal class, and ad hoc selections are not always appropriate.

In this paper, we also address dimensionality reduction through an intermediate higher-dimensional
space: we consider the case in which input signals are samples from an underlying dictionary model.
This generative model naturally suggests using the hidden covariate vectors as intermediate features,
and learning a linear projection (of the original domain) toapproximately preserve the Euclidean ge-
ometry of these vectors. Throughout the paper, we emphasizea particular instance of this model that
is related to sparse coding, motivated by studies suggesting that data-adaptive sparse representations

1Other linear methods, most notably linear discriminant analysis (LDA), exploit class labels to learn pro-
jections. In this paper, we focus on the unsupervised setting.
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are appropriate for signals such as natural images and facial images [12, 13], and enable state-of-
the-art performance for denoising, deblurring, and classification tasks [14–19].

Formally, we assume our input signal to be well-representedby a sparse linear model [20], previ-
ously used for probabilistic sparse coding. Based on this generative model, we formulate learning
a linear projection as an optimization problem with the objective of preservation, in expectation, of
pairwise inner products between sparse codes, without having to explicitly obtain the sparse repre-
sentation for each new sample. We study the solutions of thisoptimization problem, and we discuss
how they are related to techniques proposed for compressed sensing. We discuss applicability of our
results to general dictionary models, and nonlinear extensions. Finally, by applying our method to
the visualization, clustering, and classification of facial images, texture patches, and general images,
we show experimentally that it improves our ability to uncover useful structure. Omitted proofs and
additional results can be found in the accompanying supplementary material.

2 The sparse linear model
We useRN to denote the ambient space of the input signals, and assume that each signalx ∈ R

N is
generated as the sum of a noise termε ∈ R

N and a linear combination of the columns, oratoms, of
aN ×K dictionary matrixD = [d1, . . . ,dK ], with the coefficients arranged as a vectora ∈ R

K ,

x = Da+ ε. (1)

We assume the noise to be white Gaussian,ε ∼ N (0N×1, σ
2IN×N ). We are interested in the

sparse linear model [20], according to which the elements ofa are a-priori independent fromε and
are identically and independently drawn from a Laplace distribution,

p (a) =

K
∏

i=1

p (ai) , p (ai) =
1

2τ
exp

{

−|ai|
τ

}

. (2)

In the context of this model,D is usually overcomplete (K > N ), and in practice often learned in
an unsupervised manner from training data. Several efficient algorithms exist for dictionary learn-
ing [21–23], and we assume in our analysis that a dictionaryD adapted to the signals of interest is
given.

Our adoption of the sparse linear model is motivated by significant empirical evidence that it is
accurate for certain signals of interest, such as natural and facial images [12, 13], as well as the
fact that it enables high performance for such diverse tasksas denoising and inpainting [14, 24],
deblurring [15], and classification and clustering [13, 16–19]. Typically, the model (1) with an
appropriate dictionaryD is employed as a means for feature extraction, in which inputsignalsx in
R

N are mapped to higher-dimensional feature vectorsa ∈ R
K . When inferring featuresa (termed

sparse codes) through maximum-a-posteriori (MAP) estimation, they aresolutions to

min
a

1

σ2
‖x−Da‖2

2
+

1

τ
‖a‖

1
. (3)

This problem, known as thelasso [25], is a convex relaxation of the more general problem ofsparse
coding [26] (in the rest of the paper we use both terms interchangeably). A number of efficient
algorithms for computinga exist, with both MAP [21,27] and fully Bayesian [20] procedures.

3 Preserving inner products
Linear dimensionality reduction fromRN to R

M , M < N , is completely specified by a projection
matrix L that maps eachx ∈ R

N to y = Lx, y ∈ R
M , and different algorithms for linear di-

mensionality reduction correspond to different methods for finding this matrix. Typically, we are
interested in projections that reveal useful structure in agiven set of input signals.

As mentioned in the introduction, structure is often betterrevealed in ahigher-dimensional space
of features, saya ∈ R

K . When a suitable feature transform can be found, this structure may exist
as simple Euclidean geometry and be encoded in pairwise Euclidean distances or inner products
between feature vectors. This is used, for example, in support vector machines and nearest-neighbor
classifiers based on Euclidean distance, as well ask-means and spectral clustering based on pair-
wise inner products. For the problem of dimensionality reduction, this motivates learning a pro-
jection matrixL such that, for any two input samples, the inner product between their resulting
low-dimensional representations is close to that of their corresponding high-dimensional features.

2



More formally, for two samplesxk, k = 1, 2 with corresponding low-dimensional representations
yk = Lxk and feature vectorsak, we defineδp = yT

1
y
2
− aT

1
a2 as a quantity whose magnitude

we wanton average to be small. Assuming that an accurate probabilistic generative model for the
samplesx and featuresa is available, we propose learningL by solving the optimization problem
(E denoting expectation with respect to subscripted variables)

min
LM×N

E x1,x2,a1,a2

[

δp2
]

. (4)

Solving (4) may in general be a hard optimization problem, depending on the model used forak and
xk. Here we solve it for the case of the sparse linear model of Section 2, under which the feature
vectors are the sparse codes. Using (1) and denotingS = LTL, (4) becomes

min
LM×N

E a1,a2,ε1,ε2

[(

aT
1

(

DTSD − I
)

a2 + εT
1
SDa2 + εT

2
SDa1 + εT

1
Sε2

)2]

. (5)

Assuming thatx1 andx2 are drawn independently, we prove that (5) is equivalent to problem

min
LM×N

4τ4
∥

∥

∥
DTSD − I

∥

∥

∥

2

F
+ 4τ2σ2 ‖SD‖2F + σ4 ‖S‖2F , (6)

where‖·‖F is the Frobenius norm, which has the closed-form solution (up to an arbitrary rotation):

L = diag (f (λM ))V T
M . (7)

Here,λM = (λ1, . . . , λM ) is aM × 1 vector composed of theM largest eigenvalues of theN ×N

matrixDDT , andV M is theN ×M matrix with the corresponding eigenvectors as columns. The
functionf (·) is applied element-wise to the vectorλM such that

f (λi) =

√

4τ4λi

σ4 + 4τ2σ2λi + 4τ4λ2

i

, (8)

anddiag (f (λM )) is theM ×M diagonal matrix formed fromf (λM ). This solution assumes that
DDT has full rankN , which in practice is almost always true asD is overcomplete.

Through comparison with (5), we observe that (6) is a trade-off between bringing inner products
of sparse codes and their projections close (first term), andsuppressing noise (second and third
terms). Their relative influence is controlled by the variance of ε anda, through the constantsσ
andτ respectively. It is interesting to compare their roles in (3) and (6): asσ increases relative to
τ , data fitting in (3) becomes less important, and (7) emphasizes noise suppression. Asτ increases,
l1-regularization in (3) is weighted less, and the first term in(6) more. In the extreme case ofσ = 0,
the data term in (3) becomes a hard constraint, whereas (6) and (7) simplify, respectively, to

min
LM×N

∥

∥

∥
DTSD − I

∥

∥

∥

2

F
, andL = diag (λM )

− 1

2 V T
M . (9)

Interestingly, in this noiseless case, an ambiguity arisesin the solution of (9), as a minimizer is
obtained for any subset ofM eigenpairs and not necessarily theM largest ones.

The solution to (7) is similar—and in the noiseless case identical—to the whitening transform of
the atoms ofD. When the atoms are centered at the origin, this essentially means that solving (4)
for the sparse linear model amounts toperforming PCA on dictionary atoms learned from training
samples instead of the training samples themselves. The above result can also be interpreted in the
setting of [28]: dimensionality reduction in the case of thesparse linear model with the objective
of (4) corresponds to kernel PCA using the kernelDDT , modulo centering and the normalization.

3.1 Other dictionary models
Even though we have presented our results using the sparse linear model described in Section 2,
it is important to realize that our analysis is not limited tothis model. The assumptions required
for deriving (5) are that signals are generated by a linear dictionary model such as (1), where the
coefficients of each of the noise and code vectors are independent and identically distributed ac-
cording to some zero-mean distribution, with the two vectors also independent from each other.
The above assumptions apply for several other popular dictionary models. Examples include the
models used implicitly by ridge and bridge regression [29] and elastic-net [30], where the Laplace
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prior on the code coefficients is replaced by a Gaussian, and priors of the formexp(−λ ‖a‖qq) and

exp(−λ ‖a‖
1
−γ ‖a‖2

2
), respectively. In the context of sparse coding, other sparsity-inducing priors

that have been proposed in the literature, such as Student’st-distribution [31], also fall into the same
framework. We choose to emphasize the sparse linear model, however, due to the apparent structure
present in dictionaries learned using this model, and its empirical success in diverse applications.

It is possible to derive similar results for a more general model. Specifically, we make the same as-
sumptions as above, except that we only require that elements ofa be zero-mean and not necessarily
identically distributed, and similarly forε. Then, we prove that (4) becomes

min
LM×N

∥

∥

∥

(

DTSD − I
)

⊙
√

W 1

∥

∥

∥

2

F
+
∥

∥

∥
(SD)⊙

√

W 2

∥

∥

∥

2

F
+
∥

∥

∥
S ⊙

√

W 3

∥

∥

∥

2

F
, (10)

where⊙ denotes the Hadamard product and
(√

W
)

ij
=

√

(W )ij . The elements of the weight

matricesW 1, W 2 andW 3 in (10), of sizesK ×K, N ×K, andN ×N respectively, are

(W 1)ij = E
[

a2
1ia

2

2j

]

, (W 2)ij = E
[

ε2
1ia

2

2j

]

+ E
[

ε2
2ia

2

1j

]

, (W 3)ij = E
[

ε2
1iε

2

2j

]

. (11)

Problem (10) can still be solved efficiently, see for example[32].

3.2 Extension to the nonlinear case
We consider a nonlinear extension of the above analysis through the use of kernels. We denote by
Φ : RN → H a mapping from the signal domain to a reproducing kernel Hilbert spaceH associated
with a kernel functionk : RN × R

N → R [33]. Using a setD = {d̃i ∈ H, i = 1, . . . ,K} as
dictionary, we extend the sparse linear model of Section 2 byreplacing (1) for eachx ∈ R

N with

Φ(x) = Da+ ε̃, (12)

whereDa ≡ ∑K

i=1
aid̃i. Fora ∈ R

K we make the same assumptions as in the sparse linear model.
The termε̃ denotes aGaussian process over the domainRN whose sample paths are functions inH
and withcovariance operator Cε̃ = σ2I, whereI is the identity operator onH [33,34].

This nonlinear extension of the sparse linear model is validonly in finite dimensional spacesH.
In the infinite dimensional case, constructing a Gaussian process with both sample paths inH and
identity covariance operator is not possible, as that wouldimply that the identity operator inH
has finite Hilbert-Schmidt norm [33, 34]. Related problems arise in the construction of cylindrical
Gaussian measures on infinite dimensional spaces [35]. We define ε̃ this way to obtain a probabilistic
model for which MAP inference ofa corresponds to the kernel extension of the lasso (3) [36],

min
a∈RK

1

2σ2
‖Φ(x)−Da‖2

H
+

1

τ
‖a‖

1
, (13)

where‖·‖
H

is the normH defined throughk. In the supplementary material, we discuss an alter-
native to (12) that resolves these problems by requiring that all Φ(x) be in the subspace spanned
by the atoms ofD. Our results can be extended to this alternative, however inthe following we
adopt (12) and limit ourselves to finite dimensional spacesH, unless mentioned otherwise.

In the kernel case, the equivalent of the projection matrixL (transposed) is a compact, linear operator
V : H → R

M , that maps an elementx ∈ R
N to y = VΦ(x) ∈ R

M . We denote byV∗ : RM → H
the adjoint ofV, and byS : H → H the self-adjoint positive semi-definite linear operator ofrank
M from their synthesis,S = V∗V. If we consider optimizing overS, we prove that (4) reduces to

min
S

4τ4
K
∑

i=1

K
∑

i=1

(〈

d̃i,Sd̃j
〉

H

− δij

)2

+ 4τ2σ2

K
∑

i=1

〈

Sd̃i,Sd̃i
〉

H

+ ‖S‖2HS , (14)

where‖·‖HS is the Hilbert-Schmidt norm. Assuming thatKDD has full rank (which is almost
always true in practice due to the very large dimension of theHilbert spaces used) we extend the
representer theorem of [37] to prove that all solutions of (14) can be written in the form

S = (DB)⊗ (DB) , (15)

where⊗ denotes the tensor product between all pairs of elements of its operands, andB is aK×M

matrix. Then, denotingQ = BBT , problem (14) becomes

min
BK×M

4τ4 ‖KDDQKDD − I‖2F + 4τ2σ2

∥

∥

∥
KDDQK

1

2

DD

∥

∥

∥

2

F
+ σ4

∥

∥

∥
K

1

2

DD
QK

1

2

DD

∥

∥

∥

2

F
, (16)
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Figure 1:Two-dimensional projection of CMU PIE dataset, colored by identity. Shown at high resolution and
at their respective projections are identity-averaged faces across thedataset for various illuminations, poses,
and expressions. Insets show projections of samples from only two distinct identities. (Best viewed in color.)

whereKDD (i, j) = 〈d̃i, d̃j〉H, i, j = 1, . . . ,K. We can replacẽL = BTK
1

2

DD
to turn (16) into an

equivalent problem over̃L of the form (6), withK
1

2

DD
instead ofD, and thus use (8) to obtain

B = V M diag (g (λM )) (17)

where, similar to the linear case,λM andV M are theM largest eigenpairs of the matrixKDD, and

g (λi) =
1√
λi

f (λi) =

√

4τ4

σ4 + 4τ2σ2λi + 4τ4λ2

i

. (18)

Using the derived solution, a vectorx ∈ RN is mapped toy = BTKD (x), whereKD (x) =

[〈d̃1,Φ(x)〉H, . . . , 〈d̃M ,Φ(x)〉H]T . As in the linear case, this is similar to the result of applying
kernel PCA on the dictionaryD instead of the training samples. Note that, in the noiselesscase,
σ = 0, the above analysis is also valid for infinite dimensional spacesH. Expression (17) simplifies
toB = V M diag (λM )

−1 where, as in the linear case, any subset ofM eigenvalues may be selected.
Even though in the infinite dimensional case selecting theM largest eigenvalues cannot be justified
probabilistically, it is a reasonable heuristic given the analysis in the finite dimensional case.

3.3 Computational considerations
It is interesting to compare the proposed method in the nonlinear case with kernel PCA, in terms of
computational and memory requirements. If we require dictionary atoms to have pre-images inRN ,
that isD =

{

Φ(di) , di ∈ R
N , i = 1, . . . ,K

}

[36], then the proposed algorithm requires calculating
and decomposing theK × K kernel matrixKDD when learningV, and performingK kernel
evaluations for projecting a new samplex. For kernel PCA on the other hand, theS×S matrixKXX

andS kernel evaluations are needed respectively, whereX =
{

Φ(xi) , xi ∈ R
N , i = 1, . . . , S

}

and
xi are the representations of the training samples inH, with S ≫ K. If the pre-image constraint is
dropped and the usual alternating procedure [21] is used forlearningD, then the representer theorem
of [38] implies thatD = XF , whereF is anS ×K matrix. In this case, the proposed method also
requires calculatingKXX during learning andS kernel evaluations for out-of-sample projections,
but only the eigendecomposition of theK ×K matrixF TK2

XXF is required.

On the other hand, we have assumed so far, in both the linear and nonlinear cases, that a dictionary
is given. When this is not true, we need to take into account thecost of learning a dictionary,
which greatly outweights the computational savings described above, despite advances in dictionary
learning algorithms [21, 22]. In the kernel case, whereas imposing the pre-image constraint has
the advantages we mentioned, it also makes dictionary learning a harder nonlinear optimization
problem, due to the need for evaluation of kernel derivatives. In the linear case, the computational
savings from applying (linear) PCA to the dictionary instead of the training samples are usually
negligible, and therefore the difference in required computation becomes even more severe.
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Figure 2: Classification accuracy results. From left to right: CMU PIE (varying value of M ); CMU PIE
(varying number of training samples); brodatz texture patches; Caltech-101. (Best viewed in color.)

4 Experimental validation
In order to evaluate our proposed method, we compare it with other unsupervised dimensionality
reduction methods on visualization, clustering, and classification tasks. We use facial images in the
linear case, and texture patches and images of object categories in the kernel case.

Facial images: We use the CMU PIE [39] benchmark dataset of faces under pose,illumination and
expression changes, and specifically the subset used in [8].2 We visualize the dataset by projecting
all face samples toM = 2 dimensions using LPP and the proposed method, as shown in Figure 1.
Also shown are identity-averaged faces over the dataset, for various illumination, pose, and expres-
sion combinations, at the location of their projection. We observe that our method recovers a very
clear geometric structure, with changes in illumination corresponding to an ellipsoid, changes in
pose to moving towards its interior, and changes in expression accounting for the density on the
horizontal axis. We separately show the projections of samples from two distinct indviduals, and
see that different identities are mapped to parallely shifted ellipsoids, easily separated by a nearest-
neighbor classifier. On the other hand, such structure is notapparent when using LPP. A larger
version of Figure 1 and the corresponding for PCA are provided in the supplementary material.

To assess how well identity structure is recovered for increasing values of the target dimension
M , we also perform face recognition experiments. We compare against three baseline methods,
PCA, NPE, and LPP, linear extensions (spectral regression “SRLPP” [7], spatially smooth LPP
“SmoothLPP” [8]), and random projections (see Section 5). We produce 20 random splits into
training and testing sets, learn a dictionary and projection matrices from the training set, and use the
obtained low-dimensional representations with ak-nearest neighbor classifier (k = 4) to classify the
test samples, as is common in the literature. In Figure 2, we show the average recognition accuracy
for the various methods as the number of projections is varied, when using 100 training samples
for each of the 68 individuals in the dataset. Also, we compare the proposed method with the best
performing alternative, when the number of training samples per individual is varied from 40 to 120.
We observe that the proposed method outperforms all other bya wide margin, in many cases even
when trained with fewer samples. However, it can only be usedwhen there are enough training
samples to learn a dictionary, a limitation that does not apply to the other methods. For this reason,
we do not experiment with cases of 5-20 samples per individual, as commonly done in the literature.

Texture patches: We perform classification experiments on texture patches, using the Brodatz
dataset [40], and specifically classes 4, 5, 8, 12, 17, 84, and92 from the 2-texture images. We
extract12× 12 patches and use those from the training images to learn dictionaries and projections
for the Gaussian kernel.3 We classify the low-dimensional representations using an one-versus-all
linear SVM. In Figure 2, we compare the classification accuracy of the proposed method (“ker.dict”)
with the kernel variants of PCA and LPP (“KPCA” and “KLPP” respectively), for varyingM . KLPP
and the proposed method both outperform KPCA. Our method achieves much higher accuracy at
small values ofM , and KLPP is better for large values; otherwise they performsimilarly.

This dataset provides an illustrative example for the discussion in Section 3.3. For 20000 training
samples, KPCA and KLPP require storing and processing a20000×20000 kernel matrix, as opposed
to 512× 512 for our method. On the other hand, training a dictionary withK = 512 for this dataset
takes approximately 2 hours, on an 8 core machine and using a C++ implementation of the learning
algorithm, as opposed to the few minutes required for the eigendecompositions in KPCA and KLPP.

2Images are pre-normalized to unit length. We use the algorithm of [21] to learn dictionaries, withK equal
to the number of pixelsN = 1024, due to the limited amount of training data, andλ =

σ
2

τ
= 0.05 as in [19].

3Following [36], we set the kernel parameterγ = 8, and use their method for dictionary learning with
K = 512 andλ = 0.30, but with a conjugate gradient optimizer for the dictionary update step.
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Method Accuracy NMI Rand Index
KPCA (k-means) 0.6217 0.6380 0.4279

KLPP (spectral clustering) 0.6900 0.6788 0.5143
ker.dict (k-means) 0.7233 0.7188 0.5275

Table 1:Clustering results on Caltech-101.

Images of object categories: We use the Caltech-101 [41] object recognition dataset, with the
average of the 39 kernels used in [42]. Firstly, we use 30 training samples from each class to learn a
dictionary4 and projections using KPCA, KLPP, and the proposed method. In Figure 2, we plot the
classification accuracy achieved using a linear SVM for eachmethod and varyingM . We see that
the proposed method and KPCA perform similarly and outperform KLPP. Our algorithm performs
consistently well in both the datasets we experiment with inthe kernel case.

We also perform unsupervised clustering experiments, where we randomly select 30 samples from
each of the 20 classes used in [43] to learn projections with the three methods, over a range of
values forM between 10 and 150. We combine each with three clustering algorithms,k-means,
spectral clustering [44], and affinity propagation [43] (using negative Euclidean distances of the
low-dimensional representations as similarities). In Table 1, we report for each method the best
overall result in terms of accuracy, normalized mutual information, and rand index [45], along with
the clustering algorithm for which these are achieved. We observe that the low-dimensional repre-
sentations from the proposed method produce the best quality clusterings, for all three measures.

5 Discussion and future directions
As we remarked in Section 3, the proposed method uses available training samples to learnD and
ignores them afterwards, relying exclusively on the assumed generative model and the correlation
information inD. To see how this approach could fail, consider the degenerate case whenD is the
identity matrix, that is the signal and sparse domains coincide. Then, to discover structure we need
to directly examine the training samples. Better use of the training samples within our framework
can be made by adopting a richer probabilistic model, using available data to train it, naturally
with appropriate regularization to avoid overfitting, and then minimizing (4) for the learned model.
For example, we can use the more general model of Section 3.1,and assume that eachai follows a
Laplace distribution with a differentτi. Doing so agrees with empirical observations that, whenD is
learned, the average magnitude of coefficientsai varies significantly withi. An orthogonal approach
is to forgo adopting a generative model, and learn a projection matrix directly from training samples
using an appropriateempirical loss function. One possibility is minimizing‖ATA−XTLTLX‖2F ,
where the columns ofX andA are the training samples and corresponding sparse code estimates,
which is an instance of multidimensional scaling [46] (as modified to achieve linear induction).

For the sparse linear model case, objective function (4) is related to theRestricted Isometry Property
(RIP) [47], used in the compressed sensing literature as a condition enabling reconstruction of a
sparse vectora ∈ R

K from linear measurementsy ∈ R
M whenM ≪ K. The RIP is a worst-

case condition, requiring approximate preservation, in the low-dimensional domain, of pairwise
Euclidean distances of alla, and therefore stronger than the expectation condition (4). Verifying
the RIP for an arbitrary matrix is a hard problem, but it is known to hold for theequivalent dictio-
nary D̃ = LD with high probability, ifL is drawn from certain random distributions, andM is
of the order of onlyO

(

k log K
k

)

[48]. Despite this property, our experiments demonstrate that a
learned matrixL is in practice more useful than random projections (see leftof Figure 2). The for-
mal guarantees that preservation of Euclidean geometry of sparse codes is possible with few linear
projections are unique for the sparse linear model, thus further justifying our choice to emphasize
this model throughout the paper.

Another quantity used in compressed sensing is themutual coherence of D̃ [49], and its approximate
minimization has been proposed as a way for learningL for signal reconstruction [50, 51]. One of
the optimization problems arrived at in this context [51] isthe same as problem (9) we derived in
the noiseless case, the solution of which as we mentioned in Section 3 is not unique. This ambiguity
has been addressed heuristically by weighting the objective function with appropriate multiplicative
terms, so that it becomes‖Λ−ΛV TLTLV Λ‖2F , whereΛ andV are eigenpairs ofDDT [51]. This

4We use a kernel extension of the algorithm of [21] without pre-image constraints. We selectK = 300

andλ = 0.1 from a range of values, to achieve about 10% non-zero coefficients inthe sparse codes and small
reconstruction error for the training samples. UsingK = 150 or 600 affected accuracy by less than 1.5%.
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problem admits as only minimizer the one corresponding to theM largest eigenvalues. Our analysis
addresses the above issue naturally by incorporating noise, thus providing formal justification for
the heuristic. Also, the closed-form solution of (9) is not shown in [51], though its existence is
mentioned, and the (weighted) problem is instead solved through an iterative procedure.

In Section 3, we motivated preserving inner products in the sparse domain by considering exist-
ing algorithms that employ sparse codes. As our understanding of sparse coding continues to im-
prove [52], there is motivation for considering other structure inRK . Possibilities include preserva-
tion of linear subspace (as determined by the support of the sparse codes) or local group relations
in the sparse domain. Extending our analysis to also incorporate supervision is another important
future direction.

Linear dimensionality reduction has traditionally been used for data preprocessing and visualiza-
tion, but we are also beginning to see its utility for low-power sensors. A sensor can be designed to
record linear projections of an input signal, instead of thesignal itself, with projections implemented
through a low-power physical process like optical filtering. In these cases, methods like the ones
proposed in this paper can be used to obtain a small number of informative projections, thereby
reducing the power and size of the sensor while maintaining its effectiveness for tasks like recog-
nition. An example for visual sensing is described in [2], where a heuristically-modified version
of our linear approach is employed to select projections forface detection. Rigorously extending
our analysis to this domain will require accounting for noise and constraints on the projections (for
example non-negativity, limited resolution) induced by fabrication processes. We view this as a
research direction worth pursuing.
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