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Abstract

We explore a polar representation of optical flow in
which each element of the brightness motion field is repre-
sented by its magnitude and orientation instead of its Carte-
sian projections. This seemingly small change in represen-
tation provides more direct access to the intrinsic structure
of a flow field, and when used with existing variational in-
ference procedures it provides a framework in which regu-
larizers can be intuitively tailored for very different classes
of motion. Our evaluations reveal that a flow estimation
algorithm that is based on a polar representation can per-
form as well or better than the state-of-the-art when ap-
plied to traditional optical flow problems concerning cam-
era or rigid scene motion, and at the same time, it facil-
itates both qualitative and quantitative improvements for
non-traditional cases such as fluid flows and specular flows,
whose structure is very different.

1. Introduction
Understanding motion is important to both human and

computational vision systems. To understand scene motion,
most computational systems estimate optical flow – the field
of apparent velocities of the brightness pattern on the image
plane. Since the physical causes of motion can be quite
diverse (Fig. 1), inferring optical flow can be a difficult task.

In their seminal study, Horn and Schunck [16] repre-
sented the optical flow field using the velocity components
in a Cartesian coordinate system:

flow(x,y) = (u(x, y), v(x, y))
4
= (

dx

dt
,
dy

dt
) . (1)

Naturally, the representation itself does not determine the
flow, for which Horn and Schunck [16] applied their (now
classical) constant brightness assumption. However, since
this assumption alone cannot resolve the flow between con-
secutive frames due to the aperture problem, additional
global constraints are needed to render the optical flow task
well-posed. Hence, ever since Horn and Schunck [16], the

a. b. c.
Figure 1. Various motion fields. a. Piecewise smooth motion
flow as would be measured from a dynamic scene involving typ-
ical rigid objects (Replicated from [16]). b. Fluid motion. This
particular motion field represents air currents over North America.
Observe the turbulence and occasionally pseudo chaotic behavior.
c. Specular flow, i.e., the optical flow that is created due to reflec-
tion from specular objects. Observe the very large velocities and
the unique singularities in certain regions.

study of optical flow estimation has focused almost exclu-
sively on the design of proper regularized objective func-
tions whose optimization provides a flow instance in Carte-
sian representation.

Unfortunately, however, designing objective functions
for optical flow is often considered an art and relies pri-
marily on intuition1. Still, progressing over time, this type
of exploration has indeed improved flow estimation perfor-
mance on standard motion flows [3], though less success-
fully so on non-traditional ones (e.g., see [2, 12]).

This paper aspires to take optical flow estimation re-
search to a different direction. Inspired by Marr’s dis-
cussion on the importance of representations [17], we ask
whether qualitative improvement in optical flow estimation
and objective function design can be achieved by repre-
senting our objects of study differently. In particular, we
propose representing image velocities in terms of their po-
lar coordinates (magnitude and orientation) instead of their
Cartesian ones. As advocated by Marr, we show that this
not only “makes certain [flow] properties explicit”, but it
also “greatly affects how easy it is to do certain things with
it” [17, page 21]. In particular, we show how different

1Notable exceptions include physics-based regularizers for fluids [14]
and regularizers learned entirely from training data [19].
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classes of motion flow fields exhibit qualitatively different
statistical properties in this new representation (as opposed
to the Cartesian one), and perhaps more importantly, how
switching the representation provides access to a flexible
and powerful family of regularizers that both simplify and
generalize the design process of objective functions. By ad-
justing the magnitude and orientation terms differentially,
we can create objective functions that lead to good perfor-
mance not only on traditional (rigid motion) flows, but on
more complicated and qualitatively-structured flows such as
those induced by fluid motion (Fig. 1b) or specular objects
(Fig. 1c).

Finally, we also note that an important property of our
approach is the flexibility it offers. Adjustments to the regu-
larizers for different motion classes can be affected by mod-
ifying only a few lines of computer code. We show the
experimental advantages of this approach using three dif-
ferent datasets: the Middlebury benchmark [3], a specular
flow benchmark [2], and synthetic images in the spirit of
fluid motion benchmark [15]. To facilitate further scholarly
exploration, all our source code is made available for public
use via email to the authors.

2. Related work
The optical flow literature is far too extensive and diverse

to allow an exhaustive review here. As mentioned above,
modern optical flow research began in the early 1980s when
Horn and Schunck [16] combined the brightness constancy
assumption with a regularizer that expresses a hypotheti-
cal piecewise smoothness behavior, i.e., the assumption that
the flow’s derivatives are zero almost everywhere. The two
assumptions were combined to form a single energy func-
tional

E(u, v) =
∫ ∫

Ω
(I(x+u, y+v, t+1)− I(x, y, t))2+

α(|∇u|2+|∇v|2)dxdy
(2)

where I(x, y, t) is the image intensity at pixel (x, y) ∈ Ω
in time t and α controls the strength of regularization. With
this functional defined, the goal of the computational algo-
rithm is to find the vector field (u, v) that minimizes it, for
example by applying the Euler-Lagrange equations or alter-
native methods (e.g. [7,24,26]). Over the years, optical flow
algorithms have also incorporated various enhancements to
improve accuracy such as coarse-to-fine strategies to deal
with local minima (e.g., [8, 18]), median filtering to reduce
the noise in the flow (e.g., [20,24]), robust penalty functions
to handle outliers (e.g., [5]), and texture decomposition to
minimize effects of lightning variations (e.g., [23, 24]).

Somewhat surprisingly, an algorithm based on the ba-
sic energy function in Eq. 2, combined with modern mini-
mization approaches and other enhancements, can estimate
the optical flow of traditional motion sequences (e.g., as in
the Middlebury benchmark) fairly accurately [20]. How-
ever, the regularization term proposed by Horn and Schunck

’Traditional’ Specular flows Complex fluid
optical flows [19] [2] motion [15]

Figure 2. Spatial derivative histograms (log scale) of optical flow
in different databases. In all figures red and blue lines denote the
gradient magnitude of the horizontal (|∇u|) and vertical (|∇v|)
components, respectively. The black and green lines represent the
gradient magnitude of the flow orientation(|∇θ|) and flow mag-
nitude (|∇m|), respectively. Note how the polar representation
reveals hitherto neglected statistical properties of optical flows,
which can be leveraged for its estimation from image sequences.

evaluates to zero only for flows with zero divergence, and
for this reason, it is unsuitable for fluids and other non-
traditional cases [2, 12]. The same is true for alternative
regularizers based on differential properties of the flow [21].
Of course, special-purpose regularizations can be designed
for these cases, and examples for fluids include approaches
that minimize second-order divergence and curl [14, 25] or
employ the Helmholtz decomposition [13]. However, these
methods are often much more difficult to optimize and im-
plement, they are harder to use, and they do not transfer
easily to new types of flows.

3. Motivation for representational shift
To the best of our knowledge, all optical flow algorithms

represent the flow using Horn and Schunck’s classic Carte-
sian representation (Eq. 1). However, there are no physical
reasons to choose that particular representation of a vector
field. In fact, vectors, and vector fields, are more naturally
represented by their magnitude and orientation components
which indeed carry distinct information and have different
significance in the context of motion description. In this pa-
per we therefore suggest to employ a polar representation
for optical flows:

flow(x,y) = (m(x, y), θ(x, y)) . (3)

The rest of this section is dedicated to justifying this
choice more rigorously, before moving on to formulate its
application for flow estimation algorithms. We do note that
preliminary conceptual advantages of representing optical
flow and image gradients in polar coordinates have been
briefly discussed by Schunk in the early days of optical
flow research [20]. Unfortunately, however, his early re-
marks have never evolved into more rigorous computational
framework, and in particular, to our best knowledge, no op-
tical flow algorithm based on polar representation has ever
been suggested.
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3.1. Flow’s statistics

Recently, the spatial statistics of optical flow have been
investigated and exploited for estimation algorithms by
Roth and Black [19]. Here we repeated their study and com-
pared the statistics of various optical flow classes in their
Cartesian and polar representations. In particular, we used
three different databases of qualitatively different motions.
First, we used the Roth and Black [19] synthetic database
(thereafter DB-A) that was created from a collection of
depth maps of typical scenes. Second, we used the imag-
ing model by Adato et al. [1] and created 200 flows (DB-
B) that simulate the observed motions, or specular flows,
in scenes containing highly specular (mirror-like) objects.
Finally, we used 100 synthetic fluid flows (DB-C) from the
FLUid project [15], most of which are characterized by high
divergence and turbulence which are common in fluid dy-
namics. For all flows, we measured the distribution of their
spatial derivatives, averaged over all samples within each
class.

As is evident from the results in Fig. 2, the differences
between classes are far more pronounced in the proposed
polar representation. Whereas in the classical Cartesian rep-
resentation the distributions of the spatial derivatives of the
two flow components (u and v) share the same statistics in
all databases (Fig. 2 - first row), significant differences are
revealed when we switch to the polar representation. See,
for example, how magnitude and orientation show qualita-
tively different distribution in DB-C, or how the orientation
component in DB-B becomes bimodal2 as opposed to the
frequently encountered long tail behavior in the Cartesian
representation.

The differences between classes in the polar represen-
tation immediately suggest the use of different regulariza-
tions for each class of flows. Since the polar representa-
tion reveals significant statistical differences between the
two polar coordinates, we conclude that these two compo-
nents should be treated separately and differently (an insight
further strengthened by the very different scales of these co-
ordinates).

Roth and Black [19] also investigated the statistical inde-
pendence between the spatial derivatives of the horizontal
and vertical components of the flow. They obtained empir-
ical joint histograms of derivatives of the flow and the mu-
tual information (MI) between the various derivatives. In
the same spirit, here we calculated the MI and the joint his-
tograms of derivatives of the flow represented in polar coor-
dinate using database DB-A. Figure 3 shows that the spatial
derivatives of a flow exhibit larger statistical independence
when it represented in polar coordinates (compare to the
corresponding results in [19]).

2Recall that orientation is a periodic function, and hence that the left
and right ends of the graph connect.
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Figure 3. Joint log-histograms of derivatives of optical flow in po-
lar coordinates and their mutual information (MI). Small MI val-
ues indicate approximate statistical independence.

In summary, we argue that while certain important as-
pects of optical flows are concealed in the classical Carte-
sian representation, they become explicit in the polar repre-
sentation. This information can be used as prior knowledge
for motion estimation by facilitating better energy models
and regularizers fit better the class of motions at hand. In
the bulk of this paper we study these advantages in greater
depth.

3.2. Flexibility of the framework

In addition to providing natural coordinate system and
revealing hidden structure, the polar representation has the
significant advantage of easily incorporating physical prop-
erties of the flow at hand (should these become known
in advance) within the common variational framework for
flow estimation. For example, consider a case where the
flow’s orientation tends to change significantly faster than
its magnitude (as is the case in complex fluid flows), or the
case when flow magnitude grows rapidly while the orienta-
tion remains relatively stable (as is often the case in spec-
ular flow). Obviously, better flow estimation in these cases
would require treating each of the magnitude and orienta-
tion differently. Doing this in the Cartesian representation
comes with a price – it is much more complicated to iso-
late them using the Cartesian (u, v) coordinates. In the po-
lar representation this would be done in a straight forward
way, for example by smoothing the first derivative of the
first component and the second derivative of the second (see
Fig. 5 and 6 and Fig. 7). As we show later, this flexibility is
a natural byproduct of the proposed representation.

3.3. Performance evaluation

As already discussed in the literature [2–4], the com-
monly used angular error (AE) and the end point (EP) mea-
sures are problematic in terms of evaluating the perfor-
mance of flow estimation algorithms. For example, AE
is biased toward small flows compared to large flows, i.e.,
the same orientation error in the estimated flow is played
down in the AE measure as the magnitude of the flow in-
creases [3, 4]. Moreover, both AE and EP could easily ob-
scure essential aspects of the estimation process, and in par-
ticular, two estimated optical flows having similar AE or EP
error levels might be qualitatively different [2].
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Recently, an alternative approach has been proposed by
Adato et al. [2], who argued that the performance of optical
flow algorithms should be evaluated based on separate con-
sideration of the orientation (O) and magnitude (M) com-
ponents of the estimated flow, namely via an Orientation
Error (OE) map and a Magnitude Error (ME) map. Each of
these two error maps can be further averaged (spatially) to
obtain a two dimensional error descriptor (AOE,AME).

Following these arguments, we further observe that per-
formance analysis based on orientation and magnitude be-
come even more meaningful once the estimation process it-
self is based on the same dimensions, possibly leading to
better understanding of the source of errors, and as a result,
to better estimation algorithms.

4. A variation framework for Optical flow esti-
mation in polar representation

In this section we develop a general framework for opti-
cal flow estimation using the proposed polar representation.
First, note that formulating the brightness constancy and a
smoothness regularization into an energy functional based
on polar representation is quite straight forward:

E(θ(x, y),m(x, y)) =∫
Ω
ψ(I(x+m cos θ, y +m sin θ, t+ 1)− I(x, y, t))

+αθψθ(ρθ(θ))) + αmψm(ρm(m))dx
(4)

where θ(x, y) and m(x, y) are the orientation and magni-
tude of the flow, respectively, ψθ and ψm are robust penalty
functions (which, as suggested above, could be different
based on prior statistics), and ρθ and ρm are differential op-
erators which can be selected for the different terms and
components according to the class of flow or application
of interest. (For the sake of a simpler exposition, most of
our derivations assume ρ to be a first order derivative, but
arbitrary extensions are of course possible.) αθ and αm
are weight parameters that control the desired regularization
strength in the orientation or the magnitude components, a
decision that could based on the properties of the estimated
flow or the application of interest.

To use Eq. 4 under the polar representation, we realize
that m must be non-negative. To avoid this difficulty we
define the following equivalence relation ∼ over the values
of m and θ

(m, θ) ∼
{

(m, θ) m > 0
(−m, θ + π) m < 0 .

(5)

To avoid the problems due to the periodic nature of θ, we
further re-formulate Eq. 4 by over parameterizing the orien-
tation component. We define

s(x, y) = sin θ(x, y)
c(x, y) = cos θ(x, y)

}
subject to s2 + c2 = 1 (6)

where the constraint s2 + c2 = 1 is referred to as the coher-
ence constraint. Now we can re-write Eq. 4 as a constrained
minimization problem

E(c, s,m) =
∫

Ω
ψ(I(x+mc, y +ms, t+ 1)− I(x, y, t))

+αθψ(|∇c|2 , |∇s|2) + αmψ(|∇m|2)dx

subject to s2 + c2 = 1.
(7)

We stress that the coherence constraint is a key component
of the minimization problem since it ensures that variables
s and c become genuine representation of orientation.

To minimize Eq. 7 one can use a Lagrange multiplier λ
and solves a true four-parameter (c, s,m, λ) minimization
problem. While this is possible, in this paper we take a sim-
plified heuristic approach and let λ be a pre-determined pa-
rameter (which possibly varies spatially). Of course, doing
so comes with a risk. λ values too small will cause a strong
deviation from the constraint s2 + c2 = 1. On the other
hand, values too high may cause the estimated optical flow
to fall into a local minimum far from the desired results.

Naturally, one can reason about “good” values for λ.
When s2 + c2 is close to 1 the value of λ should be as small
as possible to allow the rest of the terms to express them-
selves more significantly. As the sum of s2 + c2 departs
from 1, we would like λ to grow and enforce the coherence
constrain more forcefully. Hence, we suggest that λ be a
pixel-wise pre-determined parameter that is updated before
each iteration of the minimization process to reflect the in-
sights just discussed. We therefore set

λ = e(s2+c2−1)2 , (8)

evaluated at the previous iteration values of c and s. With
this definition we now obtain the following energy func-
tional:

E(c, s,m) =
∫

Ω
λ(s2 + c2 − 1)2

+ψ(I(x+mc, y +ms, t+ 1)− I(x, y, t))

+αθψ(|∇c|2 , |∇s|2) + αmψ(|∇m|2) dx .
(9)

With Eq. 9 as our final flow model, our goal is finding a
flow (c, s,m) that minimizes the incremental version (us-
ing coarse-to-fine approach) of Eq. 9. Conveniently, at this
point, we can also take full advantage of the complete li-
brary of ”enhancements” that the vision community has de-
veloped for variational Cartesian formulations.

5. Minimization in polar coordinates
The polar representation raises several issues that one

must consider when formalizing the optimization process.
As always, to estimate the optical flow one should find the
minimizer (c, s,m) of the (incremental version of the) en-
ergy functional in Eq. 9. To represent the corresponding
Euler-Lagrange equations more clearly we employ the fol-
lowing notations (similar to Brox et al. [7]):

I∗
4
= ∂∗I(x+mc, y +ms, t+ 1), ∗ ∈ x, y

Iz
4
= I(x+mc, y+ms, t+1)− I(x, y, t)

ψ′d
4
= ψ′(I2

z ) ψ′cs
4
= ψ′(|∇c|2 , |∇s|2) ψ′m

4
= ψ′(|∇m|2)
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where Iz is the derivative in the direction of the flow. With
these notations, the necessary (Euler-Lagrange) conditions
for the minimization of Eq. 9 become

ψ′dmIzIx+λc(c2+s2−1) = αθdiv(ψ′cs · ∇c)
ψ′dmIzIy+λs(c2+s2−1) = αθdiv(ψ′cs · ∇s) (10)

ψ′dIz(cIx+sIy) = αmdiv(ψ′m · ∇m).

Clearly, Eq. 10 is a highly non-linear system. To linearize
it we employ a coarse-to-fine strategy by building an image
pyramid where in each level the incremental dc, ds and dm
are calculated. The Taylor expansions (where k is pyramid
level) for this case become

Ik+1
z = Ikz + Ikxd(mc)k + Iky d(ms)k

= Ikz + Ikx (cdm +mdc)k + Iky (sdm +mds)k .

The second order derivatives can be either ignored or re-
solved using fixed point iteration, and in our present imple-
mentation we ignore it. Representing the linear expressions
in matrix form, we obtain the following sparse system:

A

dc
ds
dm

 = −

ψ′dIxIz + λ(c3+cs2−c) +O(d2)
ψ′dIyIz + λ(cs2+s3−s) +O(d2)

ψ′dIz(Ixc+ Iys) +O(d2)


(11)

where A is

A 4= DTD+λ

3c2+s2 2cs 0
2cs 3s2+c2 0
0 0 0

−αθαθ
αm

 divψ′cs∇(s+ds)
divψ′cs∇(c+dc)
divψ′m∇(m+dm)

 ,

D = ψ′d(Ixm, Iym, Iz + Ixc+ Iys), and λ = e(s
2+c2−1)2 .

As before, αθ and αm are the smoothness parameters of the
orientation and magnitude, respectively. Interestingly, the
three parts of matrix A correspond to the data, coherence,
and smoothness terms. The system itself can be solved
using standard solvers such as successive over-relaxation
(SOR).

Unlike previous optical flow algorithms, the optimiza-
tion procedure cannot be initialized at zero. In polar co-
ordinates, points specified by c = s = 0 are not well de-
fined, they are unstable for numerical purposes, and they
do not satisfy coherence constraint. Hence, we initialize by
c = s =

√
2/2.

Importantly, since the orientation is periodic, the interpo-
lation between pyramid levels should be implemented with
care. For examples, cubic interpolation can not be used in
a naive way because otherwise the absolute value of c and
s may exceed one. Similarly, the median filtering (which is
known as a crucial tool in many optical flow algorithm [20])
must be extended to circular functions, a topic we consider
important future work. Finally, as mentioned above, the in-
terpretation of magnitude subject to the equivalence relation
in Eq. 5, which compensates for negative values, must be
applied.

As we argue, although the numerical issues are non-
trivial, the proposed framework and the polar representation
hold much promise for optical flow estimation. As we show
in the next section, even without rigorous handling of some
of these issues, the results of our suggested approach are
at least as good as the state-of-the-art on traditional optical
flows, and they exceed it both qualitatively and quantita-
tively for non-traditional optical flows such as those induced
by specular scenes or fluid motions.

6. Applications and results
In order to explore the potential of the suggested frame-

work, an algorithm based on the new representation was
implemented and compared to the state-of-the-art in opti-
cal flow algorithms [10, 20]. As mentioned above, we fo-
cused on three different types of flows, and used three flow
databases of different characteristics:

1. DB-A: The Middlebury optical flow benchmark [3].

2. DB-B: The Ben-Gurion University specular flow
database [2]

3. DB-C: our own set of synthetic images rendered from
fluid flow vector field in the spirit of the FLUid
project [15].

As we shall see, the suggested method based on the polar
representation outperforms the state-of-the-art optical flow
algorithms in all of the three benchmarks.

6.1. Performance on traditional optical flows

Among these three datasets, the Middlebury database is
the most popular and focuses on relatively traditional scenes
while avoiding specularities, transparencies, or non rigid
moving objects. Hence, the observed motion fields follow
the piecewise smoothness assumption and exhibit no out-
standing velocities, structural singularities (except for line
discontinuities due to occlusions), turbulence, or chaotic re-
gions. Since our goal was to explore what are the possible
benefits (if any) of the the polar representation, we com-
pared our suggested method to the state-of-the-art imple-
mentation by Sun et al. [20], while using their very own op-
timization approach, median filtering heuristic, and texture
decomposition for our method as well. This comparison is
summarized in Table 1 in the Classic NL and Polar Rep. NL
rows. For the sake of comparison we also bring the results
from another public domain implementation of state-of-the-
art optical flow algorithm due to the gpu4vision group [10],
although we note that their objective function and optimiza-
tion techniques are different from ours, making it difficult to
isolate the effect of flow representation in the comparative
performance measures.

The results of the seven Middlebury public ground truth
sequences are displayed in Table 1. In each box the errors
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Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3
Classic NL 0.051, 0.216 0.035, 0.255 0.054, 0.093 0.026, 0.151 0.096, 0.826 0.114, 5.378 0.183, 3.546

0.244 0.285 0.115 0.188 0.970 5.450 3.699
Polar Rep. NL 0.045, 0.089 0.048, 0.221 0.105, 0.070 0.044 , 0.097 0.124 , 0.425 0.104, 0.352 0.072, 0.444

0.138 0.234 0.131 0.183 0.647 0.502 0.579
TL-V1 0.053, 0.112 0.042, 0.132 0.080, 0.072 0.056, 0.134 0.126, 0.457 0.054, 0.323 0.103, 0.417

0.166 0.185 0.120 0.237 0.680 0.377 0.624

Table 1. Results of our suggested method and two state-of-the-art optical flow algorithms [10,20]. First line in each box shows the average
orientation and magnitude error. Second line show the standard end point error. Numbers highlighted in green emphasize best results
among the classic NL and Polar Rep. NL. Highlighted in blue are best results when obtained by the TL-V1 algorithm (though as mention
in the text, this comparison is much less informative). Note that the polar based algorithm outperforms the equivalent algorithm.

were calculated in two ways – first by the average orienta-
tion and magnitude error pair (top of each entry), and then
by the standard end point error [4]. As can be seen from
the table, the suggested optical flow algorithm outperforms
the equivalent algorithm in most of the sequences and since
the only difference between these cases is the representation
(and all that is entailed by it), we can attribute the better re-
sults to the polar representation. Note in particular that in
most of the sequences the magnitude components are esti-
mated significantly more accurately than in the algorithm
based on the Cartesian presentation.

6.2. Performance on specular flows

Motion estimation from image sequences of scenes with
highly specular (mirror like) objects provides optical flows
with unique properties. The accurate estimation of this
“specular flow” is essential for various computational vi-
sion tasks such as specular shape inference [1, 9] or 3D
posing [11]. This inference task, however, is much more
challenging than the estimation of traditional optical flow,
since the flow’s magnitude grows very large (and even un-
bounded) in certain regions, even if the physical motion in
the scene is very small. Moreover, it incorporates several
unique structural singularities at the projection of parabolic
lines [2, 22].

To the best of our knowledge, the recent work by Adato
et al. [2] is the first and only attempt to handle specular
flows more robustly (under the Cartesian representation, of
course). In that work it was argued that all optical flow
algorithms fail to estimate this class of flows because the
common regularization that all algorithms share is improper
in the presence of parabolic singularities and large magni-
tude. Indeed, in the presence of such singularities, virtu-
ally all optical flow algorithms exhibit severe errors in the
flow magnitude and significant distortions in the inferred
orientation structure. Adato et al. [2] suggested to fix these
problems with a new regularization term for the parabolic
regions, assuming one can locate those areas beforehand
(or estimate their location during the optimization process
if enough frames are provided). However, as their results
show, this solution is still short of estimating large magni-
tude flows and its results are still insufficient for subsequent

visual tasks that require accurate specular flows.
The added complexity in specular flows makes this class

of flows a natural candidate for testing the possible advan-
tages of our new polar framework. Furthermore, a database
of specular scenes sequences with their ground truth flows
is publically available [2]. Hence, we repeated the type of
test described for DB-A but with the specular flow data
from DB-B. We do note that this type of flows requires
additional care in the evaluation of performance. As dis-
cussed in Adato et al. [2], since specular flows can grow
unbounded, most error metrics might report errors of infi-
nite size, which make little sense by way of comparison or
performance evaluation. instead, we follow their mapping
of the magnitude error to a finite interval using the Geman-
McClure function [6].

Using the very same functional (Eq. 9) and minimization
process as used for traditional flows in DB-A, the results of
our polar-based estimation on specular flows are depicted in
Fig. 5 and Fig. 6 second row, and immediately show better
performance. The suggested algorithm estimates the flow
significantly more accurately than the state-of-the-art opti-
cal flow algorithm [20], especially in the magnitude com-
ponents. Compare, for example, the ground truth in Fig. 4
to Fig. 5.

However, it is also evident that using the basic polar-
based optimization (Fig. 5 and Fig. 6) does not provide ac-
curate results, in particular because in specular flows the
gradient of the magnitude component is not close to zero,
in contrast to the requirement of the model (see Eq. 2 and
Eq. 9). At this point comes the second advantage of our
framework – the flexibility to apply more appropriate regu-
larizations according to the physical properties of the flows
of interest in the magnitude and orientation domains. Here,
for example, we can smooth the flow’s orientation using
a first derivatives ∇s and ∇c (to obtain deep smoothing)
while regularizing its magnitude using the second deriva-
tive ∆m (which would permit more variations in this com-
ponent). In other words, for specular flows we propose to
minimize

E(c, s,m) =
∫

Ω
λ(s2 + c2 − 1)2

+ψ(I(x+mc, y +ms, t+ 1)− I(x, y, t))

+αθψ(|∇c|2 , |∇s|2) + αmψ(|∆m|2) dx ,
(12)

which requires modifying a single line of code from the
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Magnitude I Orientation I Magnitude II Orientation II

Figure 4. Two ground truth flows from [2]. Note the regions with
very large magnitude (Magnitude I). Observe the regions with
parabolic singularities, i.e., the fixed 180◦ orientation jump and
unbounded magnitude (Magnitude II and Orientation II).

implementation of the previous functional.
The results of this minimization process are shown in

the third rows of Figs. 5 and Fig. 6 and illustrate how the
estimation of both the magnitude and orientation improved
significantly. Importantly, we emphasize that there are no
obvious equivalent regularizers in the Cartesian representa-
tion. Clearly, it seems meaningless to apply different reg-
ularizations to the different Cartesian components, and ap-
plying it to both coordinate functions has a different mean-
ing altogether. Indeed, to achieve the same effect one must
resort to more complex Cartesian expressions, which likely
to complicate the minimization process as well.

6.3. Performance on fluid flows

When one examines optical flows due to complex fluid
motion, image sequences along with their corresponding
ground-truth motion are hard to obtain. Thus, to system-
atically study the utility of a polar representation in this
domain, we synthetically rendered images, as done in the
FLUid project [15]. However, while doing so we pre-
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Figure 5. The performance of optical flow algorithms based on
Cartesian and polar representations on specular flow sequences
with no parabolic singularities. The polar representation based al-
gorithm shows 20 percent less error in orientation and 65 percent
error in magnitude than the state-of-the-art algorithms.

ferred motions with physical interpretation and therefore we
used motion that represents air currents over North America
(Fig. 1b).

Given the properties of the flow in question (i.e., rela-
tively large and smooth variations in orientation with com-
paratively smaller variations in magnitude), for this task we
optimized

E(c, s,m) =
∫

Ω
λ(s2 + c2 − 1)2

+ψ(I(x+mc, y +ms, t+ 1)− I(x, y, t))

+αθψ(|∆c|2 , |∆s|2) + αmψ(|∇m|2) dx .
(13)

Once again, we compared the results of the suggested al-
gorithm to the one proposed by Sun et al. [20] and show the
results in Fig. 7.

As the results show, the polar representation offers
significantly better performance. Importantly, this was
achieved without considering any of the physics behind
fluid dynamics (e.g., Navier-Stokes equations) or the ef-
fect of fluid diffusion that frequently violates the brightness
constancy assumption. Still, merely changing the represen-
tation and acting directly on the orientation and magnitude
components improves performance qualitatively while us-
ing intuitive regularization terms with standard techniques
from the traditional optical flow literature.

7. Conclusion
In this work we study optical flow estimation using polar

representation of motion. We show that this representation
reveals statistical structure that otherwise is concealed in the
Cartesian representation. Furthermore, the flow’s compo-
nents seems to be more statistically independent when polar
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Figure 6. The performance of the algorithms in a scene that
contains parabolic singularities. Despite of the difficult structure
of the flow in question, the polar representation based algorithm
shows significant less error than the state-of-the-art algorithms.
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Zoom in A Zoom in B
Figure 7. Qualitative performance comparison of the polar and
Cartesian representation on image sequences of complex fluid mo-
tions. Top. The fluid motion ground truth and the two estimated
flows coded by their orientation and magnitude. Bottom. Zoom
in on two regions of interest. In this vector field representation
black arrows depict the ground truth, green vectors show the re-
sult of our suggested algorithm, and blue show the result of Sun
et al. [20]. Though neither algorithm exhibit perfect results, note
how the suggested polar-based algorithm captures the variations
in the flow much more accurately. Please zoom in using the elec-
tronic version.

representation is employed. We then demonstrate the flex-
ibility that one can gain when designing a motion estima-
tion algorithm using polar representation. Lastly, we show
how performance compares well with state-of-the-art opti-
cal flow algorithm on traditional optical flows, and exceeds
it on more complex flows such as specular flows of those
induced by fluid motion. While much work remains to fully
understand this new framework (e.g., how one handles cer-
tain filtering or interpolation operations in the cyclic orien-
tation space), we believe that this research direction holds
much promise for optical flow estimation in general.
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