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Statistical analysis summary 

In this paper, we report mean deviation of measured depths from true depths at pixels 

above certain confidence thresholds to analyze the accuracy of the depth estimation of 

our system. Detailed data analysis is provided in the Supplementary Information (SI) text, 

and the key points are summarized below: 

• The definition of mean deviation, standard deviation and confidence score is 

provided in Sec. S1.2 and Sec. S2.2. 

• Detailed training and calibration procedures are described in Sec. S3. 

• Analysis of simulated data can be found in Sec. S3.2 and Fig. S13. 

• Analysis of experimentally measured data can be found in Sec. S3.3, Fig. 4B and 

Fig. S16. 
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Supplementary Information Text 

We propose a depth sensing platform that uses a metalens to form two adjacent images 
(𝐼+, 𝐼−) with different amounts of defocus, as shown in Figure S1, and that efficiently 

computes a depth map comprising a measurement of the object depth at every pixel, and a 

confidence map that conveys the expected level of accuracy in the depth measurement at 

each pixel. 

In theory, when the point spread functions of the two images are scaled Gaussian 

functions, and when the change in defocus between the images is small enough to be 

approximately differential, the depth 𝑍 is given by the expression: 

𝑍 = (𝛼 + 𝛽
𝐹 ∗ 𝛿𝐼

𝐹 ∗ ∇2𝐼
)
−1

, (S1) 

with 𝛿𝐼 = 𝐼+ − 𝐼− and ∇2𝐼 =
1

2
∇2(𝐼+ + 𝐼−), respectively, the image contrast difference and 

the averaged spatial Laplacians at each pixel. The linear filter 𝐹 attenuates noise and optical 

artifacts. The scalar parameters (𝛼, 𝛽) are determined by the dimensions of the optics (see 

Fig. S1): 

𝛼 =
𝑍𝑓− + 𝑍𝑓+

2𝑍𝑓+𝑍𝑓−
, (S2) 

𝛽 = −
1

(𝛴𝑍𝑠)2 
(
1

𝑍𝑓+
−

1

𝑍𝑓−
)

−1

, (S3) 

where 𝑍𝑓± are in-focus distances, 𝑍𝑠 is the sensor distance, Σ is the entrance pupil size. 

These equations are equivalent to equation (5) in the main paper. 

We also design a confidence score to indicate the reliability of the depth measurement 

at each pixel: 

𝐶 = 𝑓(|𝛾1δ𝐼 + 𝛾2(∇
2𝐼)−1 + 𝛾3|) ∈ (0,1), (S4) 

where (𝛾1, 𝛾2, 𝛾3) are confidence parameters that depend on the dimensions of the optics, 

and 𝑓(□) is a nonlinear function that normalizes the confidence value to the range [0,1] 
(to be described later in Section 0). Low confidence occurs, for example, in regions where 

the images (𝐼+, 𝐼−) have uniform intensity and low contrast, subjecting the contrast 

difference 𝛿𝐼 and second order derivative ∇2𝐼 to excessive noise. 

This supplementary material provides details about the system. Section 0 describes the 

calculations for depth and confidence, and it analyzes the effects of the rectangular aperture 

used to prevent overlap between the two side-by-side images. Section 2 provides details 

about the hardware and algorithm. Section 0 describes the calibration process and 

elaborates on evaluation. 

1. Analysis 

1. Depth from differential defocus. For completeness, we include the following 

derivation of the depth equation. It is adapted from Guo et al. (1), who introduced the 

equation it in the context of a traditional refractive lens that deforms over time. Consider a 

thin lens camera with sensor distance 𝑍𝑠, in-focus distance 𝑍𝑓, and entrance pupil size Σ 
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taking a picture of a front parallel plane placed at distance 𝑍 from the lens. The captured 

image 𝐼(𝑥, 𝑦) at sensor plane location (𝑥, 𝑦) is: 

𝐼(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ) = ℎ(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ) ∗ 𝑇(𝑥, 𝑦), (S5) 

where ℎ(𝑥, 𝑦, 𝑍) is the point spread function (PSF) that we model as a Gaussian function 

ℎ(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ) =
1

2𝜋𝜎2(𝑍, 𝑍𝑠 , 𝑍𝑓 , Σ)
exp (−

𝑥2 + 𝑦2

2𝜎2(𝑍, 𝑍𝑠, 𝑍𝑓 , Σ)
) (S6) 

with standard deviation 𝜎, and 𝑇 is the sharp image of the scene as if the camera is a 

pinhole. See Fig. S2. According to the thin-lens equation 

 
1

𝑓
=

1

𝑍𝑓
+

1

𝑍𝑠
=
1

𝑍
+

1

𝑍′
, (S7)  

where 𝑓 is the focal length of the lens, and 𝑍′ is the distance from the entrance pupil to the 

focused light from the object (Fig. S2). By similar triangles, the PSF standard deviation 𝜎 

and the entrance pupil size Σ are related by: 

 
𝜎

𝑍𝑠 − 𝑍′
=

Σ

𝑍′
. (S8) 

Combining equation (S7) and (S8) yields the equation of PSF standard deviation 𝜎: 

𝜎(𝑍, 𝑍𝑠, 𝑍𝑓 , Σ) = [(
1

𝑍𝑓 
−
1

𝑍
)𝑍𝑠] Σ. (S9) 

Taking derivatives of both sides of equation (S5) with respect to the in-focus distances 𝑍𝑓 

while keeping other optical parameters fixed yields:  

𝜕𝐼(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ)

𝜕𝑍𝑓
=
𝜕ℎ(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ)

𝜕𝑍𝑓
∗ 𝑇(𝑥, 𝑦), 

where 𝜕ℎ/𝜕𝑍𝑓 is shown in the main paper (equation (3)) to have the following property: 

𝜕ℎ(𝑥, 𝑦; 𝑍, 𝑍𝑠, 𝑍𝑓 , Σ)

𝜕𝑍𝑓
=
𝜕𝜎(𝑍, 𝑍𝑠, 𝑍𝑓 , Σ)

𝜕𝑍𝑓
⋅ 𝜎(𝑍, 𝑍𝑠, 𝑍𝑓 , Σ) ⋅ [∇

2ℎ(𝑥, 𝑦; 𝑍, 𝑍𝑠 , 𝑍𝑓 , Σ)]. 

The two above equations jointly give 

𝜕𝐼(𝑍𝑓)

𝜕𝑍𝑓
=
𝜕𝜎(𝑍𝑓)

𝜕𝑍𝑓
⋅ 𝜎(𝑍𝑓) ⋅ ∇

2𝐼(𝑍𝑓). (S10) 

For simplicity, from this point forward we omit notation for the sensor location (𝑥, 𝑦) 
and for optical parameters that are constants. For any sort of camera that provides control 

of in-focus distance 𝑍𝑓 while keeping all other optical dimensions fixed, we can measure 
𝜕𝐼(𝑍𝑓)

𝜕𝑍𝑓
, 
𝜕𝜎(𝑍𝑓)

𝜕𝑍𝑓
, and ∇2𝐼(𝑍𝑓) in equation (S10) via finite differences:  

𝜕𝐼(𝑍𝑓)

𝜕𝑍𝑓
=
𝐼(𝑍𝑓 + 𝛿𝑍𝑓) − 𝐼(𝑍𝑓 − 𝛿𝑍𝑓)

2𝛿𝑍𝑓
, 
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𝜕𝜎(𝑍𝑓)

𝜕𝑍𝑓
=
𝜎(𝑍𝑓 + 𝛿𝑍𝑓) − 𝜎(𝑍𝑓 − 𝛿𝑍𝑓)

2𝛿𝑍𝑓
, 

∇2𝐼(𝑍𝑓) = ∇2 [
𝐼(𝑍𝑓 + 𝛿𝑍𝑓) + 𝐼(𝑍𝑓 − 𝛿𝑍𝑓)

2
] , (S11) 

where 𝐼(𝑍𝑓) indicates the image taken with in-focus distance 𝑍𝑓, and δ𝑍𝑓 ≪ 𝑍𝑓 is a 

differential change of in-focus distance. Using these measurements we can solve for the 

standard deviation of the PSF 𝜎, and thus depth 𝑍, via equation (S10) and (S5), in closed 

form: 

𝑍 = (
1

𝑍𝑓
+

𝑍𝑓
2

(𝛴𝑍𝑠)2𝛿𝑍𝑓
⋅

𝐼(𝑍𝑓 + 𝛿𝑍𝑓) − 𝐼(𝑍𝑓 − 𝛿𝑍𝑓)

∇2[𝐼(𝑍𝑓 + 𝛿𝑍𝑓) + 𝐼(𝑍𝑓 − 𝛿𝑍𝑓)]
)

−1

. (S12) 

In this work, we build a metalens imaging system that simultaneously creates a pair of 

images of the same scene through a shared aperture with two different in-focus distances 

𝑍𝑓 ∓ 𝛿𝑍𝑓, and that uses the image pair to compute depth via equation (S12). The system is 

depicted in Fig. S1. Denoting the image pair as 𝐼± = 𝐼(𝑍𝑓 ∓ 𝛿𝑍𝑓) and the in-focus 

distances as 𝑍𝑓± = 𝑍𝑓 ∓ 𝛿𝑍𝑓, equation (S12) can be simplified to: 

𝑍 = (𝛼 + 𝛽
𝛿𝐼

∇2𝐼
)
−1

, (S13) 

where 𝛼 =
𝑍𝑓−+𝑍𝑓+

2𝑍𝑓+𝑍𝑓−
, 𝛽 = −

1

(𝛴𝑍𝑠)2 
(

1

𝑍𝑓+
−

1

𝑍𝑓−
)
−1

, 𝛿𝐼 = 𝐼+ − 𝐼−, and ∇2𝐼 =
1

2
∇2(𝐼+ + 𝐼−). 

Parameters 𝛼, 𝛽 are constants determined by the optics, whereas 𝛿𝐼 and ∇2𝐼 can be 

measured from images (𝐼+, 𝐼−).  

There is an analogy between this depth from differential defocus equation and the 

classical diffusion process. Rewriting equation (4) in the main text as 

𝜕𝐼

𝜕𝜎2
=
1

2
∇2𝐼, (S14) 

one recognizes that it is identical to the two-dimensional diffusion equation, 𝜕𝑢/𝜕𝑡 =
𝐷∇2𝑢, where the PSF variance 𝜎2 plays the role of diffusion time 𝑡; the diffusion constant 

𝐷 equals ½; and the image intensity 𝐼 corresponds to the particle concentration 𝑢. The 

impulse response of the 2D diffusion equation is 𝑢(𝑡) =
1

4𝜋𝐷𝑡
exp (−

𝑥2+𝑦2

4𝐷𝑡
), which is the 

same as the Gaussian PSF in equation (S6). Physically, the analogy reflects the fact that 

the image blur is a local averaging process, where local energy conservation and linear 

restoring flux define the system dynamics.  

Although Gaussian PSFs are required to derive equation (S10) in theory(2), we 

experimentally find that images generated using non-Gaussian PSFs can still be used to 

predict depth through equation (S13) following the calibration process described in Section 

0. Experimentally, we also find that the system can handle surfaces that deviate from being 

front parallel, as long as the PSFs are locally constant across the spatial supports (“receptive 

fields”) of the output pixels. 
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2. Depth error and confidence. If we assume i.i.d. additive Gaussian noise in the 

captured images with zero-mean and variance 𝜖2, the image contrast difference 𝛿𝐼 and 

second order derivative ∇2𝐼 are also independent and Gaussian-distributed: 

𝛿𝐼 ∼ 𝑁(𝛿𝐼∗, 𝜖2), (S15) 

∇2𝐼 ∼ 𝑁(∇2𝐼∗, ‖∇2‖2𝜖2), (S16) 

with mean values 𝛿𝐼∗ and ∇2𝐼∗ that depend on the object being imaged. In practice we 

approximate the derivatives with finite differences, thus the symbol ∇2 here represents the 

second order differential filter, and the operation ‖∇2‖ computes the two-norm of it. We 

can use this model to derive an estimate of the standard deviation of 𝑍 that is computed by 

equation (S1) under the noise model of equations (S15) and (S16), and we can use the 

inverse of this quantity as our confidence score. A first-order Taylor expansion of equation 

(S1) gives the standard deviation(1): 

𝑆𝑡𝑑𝑍 ≈ (
𝐸1
2

𝐸2
2 (

𝑉1

𝐸1
2 +

𝑉2

𝐸2
2 −

2𝑉3
𝐸1𝐸2

))

1
2

, (S17) 

where 𝐸1 = 𝐹 ∗ ∇2𝐼∗, 𝐸2 = 𝛼𝐹 ∗ ∇2𝐼∗ + 𝛽𝐹 ∗ 𝛿𝐼∗, 𝑉1 = ‖𝐹 ∗ ∇2‖2𝜖2, 𝑉2 = (𝛼2‖𝐹 ∗
∇2‖2 + 𝛽2‖𝐹‖2)𝜖2, 𝑉3 = 𝛼‖𝐹 ∗ ∇2‖2𝜖2.  Since ∇2 and 𝐹 are both filters, ‖𝐹 ∗ ∇2‖ 

denotes the 2-norm of their convolution. We assume 𝐹 = [1] to be the identity filter here 

for simplicity. 

The measured intensity noise level of the sensor in our system is approximately 𝜖 =
0.7𝐿𝑆𝐵 (least significant bit).  Fig. S3a plots the standard deviation of depth 𝑍 as a function 

of measurements |1/∇2𝐼∗| and |𝛿𝐼∗| based on equation (S17) and this measured noise level 

𝜖. Given a scene such as Fig. S3b, we could compute the standard deviation of 𝑍 at every 

pixel point by estimating the mean values |1/∇2𝐼∗| and |𝛿𝐼∗| and using Fig. S3a as a look 

up table. In practice, we simply set the mean values |1/∇2𝐼∗| and |𝛿𝐼∗| equal to the 

measured ones |1/∇2𝐼| and |𝛿𝐼|. In Fig. S3b, the colored crosses indicate the standard 

deviations of depth 𝑍 for three different image points indicated by the corresponding 

crosses in Fig. S3a. Textureless image regions (blue cross in Fig. S3b) generally have high 

standard deviation, while those with substantial contrast have low standard deviation. 

The shape of the surface in Fig. S3a suggests that the standard deviation of depth 𝑍 can 

be approximated by a linear function of the two variables (|1/∇2𝐼|, |𝛿𝐼|). Based on this, 

we propose a simple linear function 𝑠𝑍 to fit the standard deviation of 𝑍,  

𝑠𝑍 = |𝛾1|δ𝐼| + 𝛾2|(∇
2𝐼)−1| + 𝛾3|, (S18) 

and define our confidence score 𝐶 as an inversion of this that is normalized to the range 

(0,1): 

𝐶 = 𝑓(𝑠𝑍) ∈ (0,1). (S19) 

The normalization function 𝑓(□) is non-parametric. It normalizes the standard deviation 

𝑠𝑍 to the range (0,1), where a higher confidence score 𝐶 corresponds to a lower standard 

deviation 𝑠𝑍. We choose as the normalization function 𝑓(𝑠𝑍) = 1 − 𝑔(𝑠𝑍) with 𝑔(𝑠𝑍) a 

piecewise linear fit to the normalized cumulative histogram of a large set of per-pixel 
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standard deviations {𝑠𝑍
𝑖 } that result from applying equation (S18) to a pre-defined dataset 

of input images.  

3. Aperture and Vignetting. As shown in Fig. S1, the sensor incorporates a rectangular 

aperture to prevent the two images of 𝐼+ and 𝐼− from overlapping. Other shapes, such as 

circular apertures, could also be used. In addition to preventing overlap, the aperture has 

the effect of reducing light collection efficiency for off-axis incident angles. We 

characterize this vignetting effect here.  

Depending on the location and the size of the aperture, there are two possible scenarios: 

(1) the metalens is the entrance pupil of the system (Fig. S4a), and there is no additional 

loss of light collection efficiency due to the aperture for on-axis objects; (2) the rectangular 

aperture is the entrance pupil of the system (Fig. S4b), and the on-axis light collection 

efficiency is limited by the aperture. It is clear that for maximum efficiency, scenario (1) 

is more desirable. This is also the case in our system.  

Although in scenario (1) there is no additional on-axis loss, the aperture may block some 

of the light for off-axis objects (Fig. S5ab). To quantify this effect, we calculated the light 

collection efficiency for various field angles. 

In our system, the distance 𝑍 between the object and the metalens is much larger than 

the metalens radius 𝑟 (𝑍 ≈ 150 𝑚𝑚 ≫ 𝑟 = 3𝑚𝑚). Therefore, we can use small-angle 

approximation and assume that the light intensity is approximately uniform across the 

metalens without the aperture. The introduction of the aperture blocks some of the light, 

leaving a shadow on the metalens. The shape of the aperture is rectangular, so the shadow 

has a linear boundary (Fig. S5c). The size of the bright area (𝐴bright) determines the 

collection efficiency. Note that due to the rectangular shape of the aperture, the bright area 

is a circular segment. Its height (sagitta) is given by 

𝜉 = 𝑍Δ = 𝑍{min(𝜁1, 𝜁2) − max(𝜂1, 𝜂2)}, (S20) 

where here again we use the small-angle approximation and drop the factor of cos2 𝜃, 𝜃 

being the field angle. Δ is the tangential angular range of light that can be captured by the 

system. The angles 𝜁1, 𝜁2 and 𝜂1, 𝜂2 are as depicted in Fig. S5b. It can be shown that, 

η1 = atan (
Z tan𝜃−𝑟

𝑍
); η2 = atan (

Z tan𝜃−𝑙 tan𝜓

𝑍−𝑙
); ζ1 = atan (

Z tan𝜃+𝑟

𝑍
); ζ2 =

atan (
Z tan𝜃+𝑙 tan𝜓

𝑍−𝑙
) , (S21) 

where 𝑙 is the distance between the rectangular aperture and the metalens, and 𝜓 is half the 

angular size of the aperture relative to the metalens center. 

Finally, the bright area and collection efficiency are, respectively, given by:  

𝐴bright = 𝑟2 acos
𝑟 − 𝜉

𝑟
− (𝑟 − 𝜉)√𝑟2 − (𝑟 − 𝜉)2 (S22) 

χ ≡
Light collection efficiency with aperture

Light collection efficiency without aperture
=
𝐴bright

𝜋𝑟2
, (S23) 

If the collection efficiency χ is equal to 1, no areas on the metalens is occluded by the 

aperture. Fig. S5d shows the relative light collection efficiency χ as a function of incident 
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angle. Each line corresponds to an aperture located at a different distance but with the same 

angular size 𝜓 = 2.3∘, which is similar to the dimensions of our prototype. An aperture 

placed further from the metalens induces less vignetting, and conversely, when the aperture 

is placed closer to the metalens, the vignetting effect is more significant. This will add a 

low frequency, asymmetrical variation of intensity on the captured image pair (𝐼+, 𝐼−), that 

can be effectively removed by our algorithm discussed in Section 0. 

2. Implementation details 

1. Optics. Our prototype consists of a custom-built rectangular aperture that limits the 

field of view to avoid overlap between the images (𝐼+, 𝐼−). It also pairs the 3mm-diameter, 

custom-built metalens with a bandpass filter (FL532-10, Thorlabs, Inc.) that limits the full-

width-at-half-maximum (FWHM) of the incoming light spectrum to 10nm centered at 

532nm, and a monochrome photosensor (Grasshopper 3 GS3-U3-23S6M-C, FLIR) with a 

global shutter and a maximum frame rate of 160 frames-per-second. The dimensions of the 

system are about 4cm×4cm×10cm, but since the diameter of the lens is only 3mm and the 

thickness of the metalens (together with the glass substrate) is only 1.5 mm, its size could 

be substantially reduced using special-purpose components.  

As discussed in Section 0, the aperture is not necessarily rectangular, and can be any 

shape as long as the image pair does not overlap. The vignetting effect introduced by the 

aperture can be effectively removed using appropriate image filters.  

As shown in Fig. S1, the metalens uses spatial multiplexing to incorporate two off-axis 

lens phase profiles within a shared aperture. Before they are multiplexed, each off-axis lens 

phase profile is designed to modulate an incident spherical wavefront, which is at 

wavelength 𝜆 and is centered along the optical axis at the in-focus plane, so that all light 

arrive at the off-axis point of focus on the sensor in phase. Each of the two phase profiles, 

𝜙+(𝑥, 𝑦) and 𝜙−(𝑥, 𝑦), has a distinct in-focus distance, 𝑍𝑓+ and 𝑍𝑓−, respectively, and the 

points of focus are at symmetric transverse offsets ±𝐷 from the optical axis. The phase 

profiles that satisfy these criteria are:  

ϕ±(𝑥, 𝑦) = −
2𝜋

𝜆
(√𝑥2 + 𝑦2 + 𝑍𝑓±

2 +√𝑥2 + (𝑦 ∓ 𝐷)2 + 𝑍𝑠2 −√𝐷2 + 𝑍𝑠2 − 𝑍𝑓±) , (S24) 

where as shown in Fig. S1, 𝑍𝑓± is the designed in-focus distance, 𝑍𝑠 is the distance between 

the metalens and photosensor, and 𝐷 is the transverse displacements of the off-axis image 

centers. The shapes of 𝜙± are shown in Fig. S6a-b. In our design, the dimensions are 𝑍𝑓− =

18 𝑐𝑚, 𝑍𝑓+ = 14.4 𝑐𝑚,  𝑍𝑠 = 4 𝑐𝑚, and 𝐷 = 1.5 𝑚𝑚, and the working wavelength is 

𝜆 = 532𝑛𝑚. The overall phase profile is achieved by interleaving the two phase profiles 

at a subwavelength scale.  

 The assembled sensor distance Zs
′  can be different from the designed one 𝑍𝑠, which 

results in different assembled in-focus distances 𝑍𝑓±
′ . All that is required is an adjustment 

to the two parameters (𝛼, 𝛽) that appear in the equation for depth (equation (S1)), so that 

the depth equation changes to: 

𝑍 = (𝜈1 + 𝜈2 (𝛼 + 𝛽
𝐹 ∗ 𝛿𝐼

𝐹 ∗ ∇2𝐼
))

−1

, (S25) 
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with two suitable “adjustment” parameters (𝜈1, 𝜈2). The optical parameters (𝛼, 𝛽) are 

changed to (𝜈1 + 𝜈2𝛼, 𝜈𝛽) to accommodate the difference in dimensions between the 

designed and the assembled system.  

We perform the following calibration steps to crop and align the image pairs (𝐼+, 𝐼−) 
that are transduced at the photosensor. We place a point light source in front of the camera, 

which generates two bright spots on (𝐼+, 𝐼−) that are identified by the locations of the 

centers. By repeating this as we vary the location of the point light source, we obtain a 

dense set of corresponding 2D points between 𝐼+ and 𝐼−. Using these correspondences, we 

can find out a linear perspective transformation (homography), which is represented by a 

3 × 3 invertible matrix 𝐻, that maps each 2D pixel location in 𝐼+ to its corresponding point 

in 𝐼− and thereby aligns the two images. We experimentally find that matrix 𝐻 does not 

change with the depth of the point source, and that overall, the alignment error is less than 

one pixel. A typical measurement from the photosensor, along with a superimposed 

visualization of the points used for alignment, are shown in Fig. S7.  

2. Computational architecture. The filter 𝐹 in the depth equation (equation (S1)) can 

be used to improve the quality of the depth measurement by attenuating sensor noise. It is 

also beneficial to compute separate depth measurements using distinct filters and then 

merge these measurements into a final depth map(1). This is evident from the noise analysis 

of Section 0, which implies that the variances of two depth measurements at a single pixel 

obtained using two different filters 𝐹𝑖 and 𝐹𝑗 will be determined by the values of the filtered 

contrast differences and second order derivatives, (𝐹𝑖 ∗ 𝛿𝐼, 𝐹𝑖 ∗ ∇
2𝐼) and (𝐹𝑗 ∗ 𝛿𝐼, 𝐹𝑗 ∗

∇2𝐼), which, if the filters are properly designed, can be complementary: When one depth 

measurement has high variance (low confidence), the other can have low variance (high 

confidence). 

For the metalens depth sensor, we use a set of nine filters {𝐹𝑖} (𝑖 = 1…9) having 

different shapes and spatial supports, which provides a balance between depth accuracy 

and computational complexity. The contrast difference and the second order derivative 

from each filter (𝐹𝑖 ∗ ∇
2𝐼, 𝐹𝑖 ∗ 𝛿𝐼) are used to individually generate an estimate. These 

estimates are fused together by probabilistic inference. This computation is end-to-end 

differentiable, therefore the parameters in the network can be automatically tuned instead 

of manual calibration, using back-propagation and stochastic gradient descent, to optimize 

the depth accuracy for a simulated set of natural-looking objects. The remainder of this 

section describes the sequence of calculations of our algorithm, arranged in a feed-forward 

computational graph, that compute depth and confidence using multiple filters; and the 

next section describes how the parameters are automatically tuned to optimize depth 

accuracy. 

Fig. S9a shows the full computational graph of the metalens depth sensor. In addition 

to depth map 𝑍, it also produces a confidence map 𝐶 that indicates the expected accuracy 

of the depth at each pixel. For simplicity, the computational graph predicts the inverse 

depth 𝑃 = 1/𝑍, in the single-filter case using:  

𝑃 = 𝛼 + 𝛽
𝐹 ∗ 𝛿𝐼

𝐹 ∗ ∇2𝐼
, (S26) 

and then calculates the inverse of this to obtain depth 𝑍.  
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The first operations applied to the (aligned) input images (𝐼+, 𝐼−),  are the spatial second 

order derivative and the pixel-wise contrast difference:  

∇2𝐼 =
1

2
∇2 ∗ (𝐼+ + 𝐼−), (S27) 

𝛿𝐼 = (𝐼+ − 𝐼−). (S28) 

We use this filter to estimate the Laplacian: 

∇2=

[
 
 
 
 

0 0.0013
0.0013 0.0377

0.004
0.1162

0.0013 0
0.0377 0.0013

0.004 0.1162 −0.6421 0.1162 0.004
0.0013 0.0377

0 0.0013
0.1162
0.004

0.0377 0.0013
0.0013 0 ]

 
 
 
 

. (S29) 

A bank of nine pre-determined filters 𝐹𝑖 are separately convolved with the second order 

derivatives ∇2𝐼 and the contrast difference maps 𝛿𝐼 to produce nine tuples of 

{(𝐹𝑖 ∗ ∇
2𝐼, 𝐹𝑖 ∗ 𝛿𝐼)}. Each tuple generates an estimate of inverse depth 𝑃𝑖 using a robust 

version of equation (S26): 

𝑃𝑖 = 𝛼𝑖 + 𝛽𝑖
(𝐹𝑖 ∗ 𝛿𝐼)(𝐹𝑖 ∗ ∇

2𝐼)

(𝐹𝑖 ∗ ∇2𝐼)2 + 𝜌1
, (S30) 

with the stabilizing constant set to 𝜌1 = 10−5. 

For the confidence map, we first calculate an approximation of the standard deviation 

of each inverse depth 𝑃𝑖. The first order approximation of equation (S1) along with 

equation (S26) yields: 

𝑍 ≈
1

𝛼
(1 −

𝛽𝛿𝐼

α∇2𝐼
) =

2

𝛼
−

𝑃

𝛼2
∝ 𝑃, (S31) 

which indicates the standard deviation of inverse depth 𝑃 is proportional to the standard 

deviation of 𝑍. Thus, the approximate standard deviation of 𝑃 uses a form similar to 

equation (S18): 

𝑠𝑃𝑖 = |𝛾3
𝑖 +∑𝛾1

𝑖𝑗
|𝛿𝐼𝑗| + 𝛾2

𝑖𝑗 1

|∇2𝐼𝑗| + 𝜌2

9

𝑗=1

| , (S32) 

where {(𝛾1
𝑖 , 𝛾2

𝑖𝑗
, 𝛾3

𝑖𝑗
)} are tunable coefficients and  𝜌2 is another stabilizing constant, 0 <

𝜌2 ≪ |∇2𝐼| that is set to  𝜌2 = 10−1 in our implementation. 

Finally, each estimate of inverse depth is interpreted as a Gaussian distribution, with 

mean 𝑃𝑖 and standard deviation 𝑠𝑃𝑖, and the nine estimates are fused into a maximum 

likelihood estimate: 

𝑃 = 𝑚𝑒𝑎𝑛𝑗 𝑃
𝑗 , (S33) 

𝑠𝑃 = (𝑚𝑒𝑎𝑛j(𝑠𝑃𝑗)
2
+𝑚𝑒𝑎𝑛j(𝑃

𝑗)
2
− 𝑃2)

1
2
. (S34) 
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Two tunable parameters 𝜈1 and 𝜈2 are included to allow adjustment of the effective 

sensor-lens distance 𝑍𝑠 as described in equation (S25), and thus the final depth is given by: 

𝑍 = (𝜈1 + 𝜈2𝑃)
−1. (S35) 

As described in Section 0, the coefficients 𝜈1 and 𝜈2 can be adjusted whenever the system’s 

sensor distance is modified. The final confidence score is: 

𝐶 = 𝑓(𝑠𝑃). (S36) 

The filter banks {𝐹𝑖} we use in the computational graph is shown in Fig. S9b. Each filter in 

this bank has the analytic form:  

𝐹(𝑥, 𝑦; 𝜅, 𝑚, 𝑛) =
𝜕𝑚+𝑛

𝜕𝑚𝑥𝜕𝑛𝑦
(exp

−(𝑥2 + 𝑦2)

2𝜅2
) ∗ (1 − exp

−(𝑥2 + 𝑦2)

2𝜅𝑙𝑜𝑤
2  ) , (S37) 

where 𝜅 determines the scale of the filter and 𝑚, 𝑛 control the shape, and the symbol ∗ 

denotes the two dimensional spatial convolution. Each filter is a derivative of Gaussian 

multiplied by a high pass filter with standard deviation 𝜅𝑙𝑜𝑤 that has the effect of 

eliminating the low-frequency vignetting effect described in Section 0. Note that the multi-

scale Gaussian component of the filter bank together with the image second order 

derivative can be efficiently implemented using the scheme proposed by Burt and 

Adelson(3). 

The full feed-forward computational graph is shown in Fig. S8a, and it includes 191 

tunable parameters:{𝛼𝑖, 𝛽𝑖}, {(𝛾1
𝑖 , 𝛾2

𝑖𝑗
, 𝛾3

𝑖𝑗
)}, 𝜈1, 𝜈2. Since the computational graph is feed-

forward, and since the final depth and confidence values that it produces are differentiable 

with respect to each parameter, all of the parameters can be automatically optimized by 

back-propagation and gradient descent to optimize the depth prediction accuracy of a 

dataset of scenes that have known depth. This property of the computational graph makes 

calibration particularly convenient and avoids requiring precise optical positioning of the 

components.   

3. Training and Calibration 

Training and calibrating the computational graph means finding values for the tunable 

parameters that produce depth measurements that are as accurate and confident as possible. 

In order to minimize the workload each time a new system is assembled, we divide the 

process into two steps. First we tune the majority of parameters {𝛼𝑖, 𝛽𝑖}, {(𝛾1
𝑖 , 𝛾2

𝑖𝑗
, 𝛾3

𝑖𝑗
)} in 

simulation. Then we adjust the rest two parameters (𝜈1, 𝜈2) using images that are captured 

by the physical instantiation of the sensor.  

1. Rendering defocused images for training. To perform simulation, we built a 

rendering system that simulates defocused image pairs (𝐼+, 𝐼−) from a digital description 

of a virtual three-dimensional scene. The rendering system represents the metalens by a 

tabulated set of measured point spread functions (PSFs), like the ones in Fig. S8.  

Fig. S10a depicts our rendering process in two dimensions for illustration purposes. In 

practice it operates in three dimensions using planar segments instead of linear ones. Our 

renderer accepts as input a collection of tabulated PSF that are either specified, or measured 

by placing a point light source in front of the sensor, at a discrete set of spatial locations 
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{(𝑋𝑘, 𝑍𝑘)}. We denote the PSF for any source location (𝑋, 𝑍) as 𝑘(𝑢; 𝑋, 𝑍), where 𝑢 

indexes the pixels on the photosensor with origin at the chief ray. For simplicity, we 

describe here the rendering for a single slanted line segment; more complicated shapes can 

be decomposed into piecewise linear segments.  

As is shown in Fig. S10b, our system first approximates the PSF at each vertex 

(endpoint) of the line segment {(𝑋𝑣, 𝑍𝑣)}𝑣=0,1, denoted as 𝑘(𝑢; 𝑋𝑣, 𝑍𝑣), using bilinear 

interpolation between the grid locations at which the PSF was specified/measured. Then, 

the PSF 𝑘(𝑢; 𝑋, 𝑍) at every point (𝑋, 𝑍) on the segment is approximated using linear 

interpolation of PSFs at each vertex (𝑋𝑣, 𝑍𝑣) with weight 𝑤𝑣 (
𝑋

𝑍
), as in Fig. S10c. Finally, 

the image 𝐼(𝑥) is the summation of the (interpolated) PSFs at all points on the line segment, 

weighted by the spatial texture (emitted radiance) pattern that exists on the segment: 

𝐼(𝑥) ≈ ∑∑𝑘(𝑥 −
𝑋

𝑍
; 𝑋𝑣 , 𝑍𝑣)

𝑣𝑋,𝑍

𝑤𝑣 (
𝑋

𝑍
)𝑃 (

𝑋

𝑍
) 

=∑𝑘(𝑥; 𝑋𝑣, 𝑍𝑣) ∗ (𝑤𝑣(𝑥)𝑇(𝑥))

𝑣

, (S38) 

where 𝑇(𝑥) denotes the texture (emitted radiance) at the point that projects to (𝑥, 1) on the 

image plane. In practice, we enhance the accuracy of this approach by sampling the 

specified/measured PSFs more finely, i.e., by using a finer sampling of point source 

locations (𝑋𝑘, 𝑍𝑘), in regions of the space where the system is more focused and the PSFs 

are sharper. 

As described so far, the rendering process applies to any continuous, piecewise-linear 

surface. During parameter tuning we also want the computational system to experience 

scenes that contain discontinuities in surface depth, so that it can learn to associate the 

nearby image points with low predicted confidence values. Depth discontinuities create 

occlusion events, meaning that some rays through the metalens aperture see surface points 

that other rays do not. These effects are hard to be modeled exactly using only PSFs of the 

optical system, but for piece-wise linear scenes, we can simulate a close approximation as 

follows.  

We divide the (possibly discontinuous) scene into piecewise linear segments 𝑙 =
1, … , 𝑁, and for each segment 𝑙 we separately render its image 𝐼𝑙(𝑥) on the photosensor 

using equation (S38). We also render a blur mask 𝑀𝑙(𝑥) that is an image of segment 𝑙 with 

constant texture 𝑇(𝑥) = 1. Finally, we sum all the images of segments together, weighted 

by the blur masks of the foreground segments: 

𝐼(𝑥) =∑𝐼𝑙(𝑥)

𝑙

∏ (1−𝑀𝑠(𝑥))

𝑠 occludes 𝑙

. (S39) 

Fig. S11 shows a sample image 𝐼 corresponding to a typical scene shape 𝑍true that is 

generated by our rendering system. It contains slanted, planar foreground and background 

segments, with depth discontinuities along the foreground-background boundary. Fig. S11 

also shows the segmentation of the shape, the rendered image 𝐼𝑙 and the blur mask 𝑀𝑙 of 

each segment 𝑙, as well as the final rendered image 𝐼. When the system renders the image 

pairs (𝐼+, 𝐼−) required by the metalens sensor, two tabulated sets of PSFs are provided to 
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separately render the two differently defocused images for each scene shape. The two sets 

of provided PSFs were Gaussian functions that have standard deviations fitted to designed 

PSFs of the metalens depth sensor. Experimentally, we observe that our layer-based 

approximation to the defocusing effects adjacent to depth discontinuities performs better 

than alternative approximations, such as applying blur to an all-in-focus pinhole image(4). 

2. Training with simulated data. Using the rendering system we generate a dataset of 

500 tuples (𝐼+, 𝐼−, 𝑍true) of randomly-generated, two-layer scenes. For these, we 

randomize the slants and tilts of the foreground and background segments, and we 

randomly generate triangular foreground boundary shapes. The textures for the foreground 

and background scene planes are randomly selected, from a database of calibrated 

photographs of textures under a variety of lighting conditions(5).  

Using this dataset, we perform back-propagation and gradient descent to automatically 

tune the values of the computational parameters in order to optimize the 1-norm loss 

function: 

𝐿(𝑍, 𝐶, 𝑍true) = 𝑚𝑒𝑎𝑛(𝑒𝑟𝑟(𝑍, 𝑍true) ⋅ 𝑊(𝑍true)) (S40)

where 𝑒𝑟𝑟(⋅,⋅) is an error based on inverse depth,  

𝑒𝑟𝑟(𝑍, 𝑍true) = |
1

𝑍
−

1

𝑍true
| , (S41) 

that experimentally results in fewer outliers than using an error based on depth |𝑍 − 𝑍𝑡𝑟𝑢𝑒|, 
and 𝑊 gives higher weights to pixels that are close to depth discontinuities. In practice, we 

use: 

𝑊(𝑥, 𝑦) = {
5, (𝑥, 𝑦) is within 9 pixel from a depth boundary 

1, otherwise
,  (S42) 

which is visualized in Fig. S14.  

We use the Adam optimizer, with learning rate 0.001, to train parameters  

{𝛼𝑖, 𝛽𝑖}, {(𝛾1
𝑖 , 𝛾2

𝑖𝑗
, 𝛾3

𝑖𝑗
)} at the same time, while fixing the rest two parameters 

(𝜈1 = 0, 𝜈2 = 1). The training takes in an image pair (𝐼+, 𝐼−) at each iteration (batch 

size=1). Convergence occurred after roughly 4000 iteration, and the total training time is 

586 secs. The training and the validation losses across iterations are shown in Fig. S12. We 

use 400 out of the 500 simulated scenes for training, and the rest for validation.  

Fig. S13a-c provides a quantitative analysis of the depth accuracy on the simulated 

validation set. Fig. S13a shows the distribution of depth measurements as a function of 

object distance from the sensor (“true depth”). Most measurements have less than 10% 

relative error (dashed line). Fig. S13b shows a sparsification plot, which summarizes how 

well the system can exploit different confidence thresholds to trade between outputting 

sparse depth maps that are accurate and dense depth maps that are less accurate. The 

abscissa is the sparsity, or fraction of output pixels at which depth is reported, and the red 

curve is the confidence threshold that produces each sparsity value. Meanwhile, the black 

curve is the mean error of the depth measurements that are reported. Fig. S13c plots the 

mean error as a function of object distance for the three different confidence thresholds that 

are indicated by the vertical dashed lines in Fig. S13b.   
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3. Fine tuning with captured data. Following the initial round of training with 

rendered data, we adjust the values of the two coefficients (𝜈1, 𝜈2) using images (𝐼+, 𝐼−) 
that are captured by the metalens depth sensor. For this, we fabricate flat, textured, planar 

objects and align them in front of the sensor such that the depth 𝑍true at every pixel is 

known. We use grid search to find the two parameter values that minimize a robust 

objective:  

𝐿fine tune(𝑍, 𝑍𝑡𝑟𝑢𝑒) =  {
𝑒𝑟𝑟(𝑍, 𝑍𝑡𝑟𝑢𝑒),          𝑒𝑟𝑟(𝑍, 𝑍𝑡𝑟𝑢𝑒) < 0.02

0.02,                          otherwise
. (S43) 

The textures are randomly drawn from Describable Textures Dataset(6) and are printed 

and glued onto flat planar objects (see Fig. S15 for examples). We use two for training and 

ten for testing. For each textured plane, we align it to be parallel to the sensor plane and 

move it to different depths 𝑍true between 0.1 and 0.4m with step size 0.01m.  

Similar to the validation, the quantitative testing result is shown in Fig. S16a-c. We find 

that the system can predict depths over the interval [0.3m, 0.4m], with depth errors that are 

smaller than 10% of the true depth. Increasing the confidence threshold reduces error (in 

exchange for lower density), and the overall mean errors of the 50% most confident and 

the 5% most confident pixels, respectively, are about 0.04m and 0.03m respectively.  

Fig. S17 shows additional examples of depth maps that are produced by the sensor for 

different scenes. Fig. S17a is an “infinite mirror” consisting of two mirrors that reflect light 

from LED light sources. In this case, the sensor recovers the depth of the LED as well as 

the depths of all virtual images of that LED. Fig. S17b shows one view of a finger gesture, 

suggesting a possible application to gesture-based human-computer interfaces on small, 

low-power platforms like wearables.  

  



 

 

15 

 

 
Fig. S1. System pipeline. The metalens depth sensor captures two images (𝐼+, 𝐼−) 
through the same aperture that have different in-focus distances (𝑍𝑓+, 𝑍𝑓−). A sequence of 

calculations applied to each local neighborhood of these images produces a per-pixel depth 

map 𝑍 and a per-pixel confidence map 𝐶. 
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Fig. S2. Wide aperture camera and pinhole camera model. When imaging a front-

parallel plane using a wide aperture camera, the image formed on the photosensor 𝐼(𝑥, 𝑦) 
is the convolution of the point spread function ℎ(𝑥, 𝑦, 𝜎) with the image 𝑇(𝑥, 𝑦) of the 

same scene as if taken by a pinhole camera with the same sensor distance (equation (S5)). 
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Fig. S3. Modeling depth error. (a) First-order approximation of the standard 

deviation of measured depth 𝑠𝑍 of the metalens sensor as a function of processed image 

values (|1/∇2𝐼∗|, |𝛿𝐼∗|), based on a simple additive Gaussian model for sensor noise. (b) 

A sample scene. The standard deviation of measured depth 𝑠𝑍 at any pixel can be estimated 

using equation (S17) and for three particular pixels, is visualized in (a).  The blue pixel is 

in a low-contrast region where the standard deviation is large (and confidence is low). The 

orange and green pixels are in high-contrast regions where standard deviation is small (and 

thus confidence is high). 
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Fig. S4. Two possible configurations of the entrance pupil. (a) The metalens 

functions as the entrance pupil of the optical system. In this case, the on-axis angular 

acceptance range of the light cone is determined by the metalens, not the rectangular 

aperture. (b) The rectangular aperture functions as the entrance pupil of the optical system. 

In this case, the on-axis angular acceptance range of the light cone is limited by the 

rectangular aperture.  
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Fig. S5. Vignetting caused by rectangular aperture. (a) Part of the metalens is 

occluded by the rectangular aperture for off-axis incident light. (b) Side view of optics. The 

light collection efficiency is determined by four angles: 𝜂1 and 𝜂2 are, respectively, the tilt 

angles of the lines connecting the object point with the top edges of the metalens and the 

rectangular aperture; 𝜁1 and 𝜁2 are the tilt angles of the lines connecting the object point 

with the bottom edges of the metalens and the rectangular aperture. The field angle is 𝜃, 

and 𝜓 is the angular size of the rectangular aperture relative to the metalens center. The 

tangential angular Δ is the range of light that can be captured by the system. (c) Front view 

of the metalens. When light is blocked by the rectangular aperture, only part of the metalens 

is illuminated, which is denoted as the bright area. (d) The relative light collection 

efficiency as a function of field angle. Different lines correspond to different distance 

between the rectangular aperture and the metalens. For this graph, the angular size of the 

aperture is fixed at 𝜓 = 2.3∘, which is approximately the angular size of the aperture in our 

setup. 
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Fig. S6. The multiplexed, wrapped phase profile of the metalens. (a)-(b) The 

unwrapped phase for the two off-axis lens phase profiles 𝜙± respectively, following 

equation (S24). The final metalens phase profile is the spatial interleaving of the two phase 

profiles. (c)-(d) Zoom-in view of the wrapped phase for the two off-axis lens phase profiles 

in the same region on the metalens (the red highlighted area in (a)-(b)). Note the difference 

in the orientation and spacing of Fresnel zones. (e) The spatial interleaving result of (c) and 

(d). (f) Zoom-in view of the spatially interleaved wrapped phase profile in the highlighted 

red region in (e).  
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Fig. S7. Alignment of the image pair (𝐼+, 𝐼−). We use a shifting point light source in 

front of the sensor to produce a dense set of corresponding points between the two adjacent 

regions of the photo sensor (orange and green), and we use these correspondences to fit a 

linear projective transformation (homography) that maps pixel locations in 𝐼− to 

corresponding pixel locations in 𝐼+. Experimentally we find that the fitted homography 

does not change when the light sources are placed at different depths. After fitting, the 

mean alignment error between  𝐼+ and 𝐼− (blue) is 0.8 pixels. 
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Fig. S8. Point spread functions of the sensor, measured using LED and laser sources. 

In general, the shapes of the PSFs resemble pillboxes, but with ringing. The PSFs from 

LED sources are subject to chromatic aberration and are therefore asymmetric.   



 

 

23 

 

 

Fig. S9. Feedforward computational graph. (a) Each pair of (aligned) input images 
(𝐼+, 𝐼−) is converted into a per-pixel depth map 𝑍 and a per-pixel confidence map 𝐶. In 

total, there are fewer than 700 floating point operations (FLOPs) required for each output 

pixel, and the spatial support (“receptive field”) required to generate one pixel point of 

depth and confidence is 25 × 25 pixels (orange box in 𝐼+). The feed-forward structure of 

the calculations allows the simultaneous tuning of all parameters by back-propagation and 

gradient descent. Most parameters are optimized using simulated data, and only two 

parameters (red) are fine-tuned using captured measurements. (b) Expanded view of the 

filter bank 𝐹. 
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Fig. S10. Rendering defocused images of a single linear segment in two dimensions. 

(a) The renderer takes as input a set of tabulated PSFs corresponding to a discrete set of 

point source locations (𝑋, 𝑍). To generate an image of the line segment (red), the system 

first approximates the PSFs at the vertices (𝑋𝑣, 𝑍𝑣) by spatial interpolation (b). Then, it 

interpolates the PSF at every point in the line segment using the PSFs at the vertices, sum 

the contributions from each point weighted by the texture (emitted radiance) at that point 

(c).   
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Fig. S11. Sample scene from our renderer. Our renderer generates image of 

foreground (𝐼0) and background  (𝐼1) separately using equation (S38), and combine them 

together using the masks (𝑀0, 𝑀1) according to equation (S39). This scheme closely 

approximates the scene at the depth boundaries.  
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Fig. S12. The training and validation loss on the simulated dataset. 
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Fig. S13. Validation of the system in simulation. (a) The distribution of measured 

depth values for each true depth. Ideally all predictions should lie on the solid diagonal 

line. White dashed line indicate 10% relative error. (b) Sparsification plot created by 

sweeping a confidence threshold from 0 to 1 and only reporting depth at pixels with 

confidence above each threshold. For example, a confidence threshold (red curve) value of 

0.75 corresponds to depth being reported at about 25% of pixels (75% sparsity on abscissa) 

and a mean error (black curve) value of about 0.002m. (c) Mean error as a function of 

object distance (“true depth”), plotted using three different confidence thresholds that are 

colored in correspondence with the dashed lines in (b). For object distances between 0.15m 

and 0.17m, where the system is most accurate, increasing the confidence threshold 

(sparsity) generally reduces the mean error.  
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Fig. S14. Depth and confidence estimation of a sample simulated scene. The 

simulator rendered the image pair (𝐼+, 𝐼−) given the true shape Ztrue and textures. The 

boundary mask W adds weight to the depth boundary in the loss function in equation (S42). 

We demonstrate the confidence mask C and the estimated depth Z under different 

confidence threshold/density.  
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Fig. S15. Textures drawn from Describable Textures Dataset(6) used in fine tuning 

and testing of the real prototype. 
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Fig. S16. Testing of the real prototype. Similar to Fig. S13, we provide quantitative 

evaluation of the depth accuracy of the real prototype, after fine tuning the parameters, 

using captured data with known depth. (a) The distribution of estimate depth at every true 

depth. (b) The sparsification plot. (c) Mean error at different confidence thresholds/sparsity 

indicated by the corresponding color in (b). According to (b) and (c), with the increase of 

confidence threshold/sparsity, the mean error reduces monotonically. Using the 50% most 

confidence pixels (green in (b) and (c)), the system measures depth throughout a range of 

0.3m to 0.4m within 10% relative error.  
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Fig. S17. Additional depth estimation results. (a) Reflective objects. The infinite 

mirror creates many virtual images of the light source at uniformly-stepped depth by 

reflecting the light back-and-forth inside the device. The depth sensor observes a part of it 

(black box), and measures the depth of the virtual images. (b) Finger gesture, which 

suggests use in a gesture-based interface for watches or other small, wearable devices.  
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Movie S1. The video shows real time depth estimation using the metalens depth 
sensor for several dynamic scenes. Similar to Fig. S17, it simultaneously shows 
the captured image pairs (𝑰+, 𝑰−), and the measured depth map 𝒁 masked using 
the confidence metric.  
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