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1 Relationship between time-dependent and stationary
RTE

Our analysis in the main paper is based on the time-dependent radiative transfer
equation, which we reproduce here for easier reference,

1

c

∂L (x,ω, t)

∂t
+ ω · ∇L (x,ω, t) =− σt (x)L (x,ω, t)

+ σs (x)

∫
S2
fp (x,ω ·ψ)L (x,ψ, t) dψ, (1)

In the computer vision and graphics literature, more commonly encountered
is the stationary version of the RTE

ω · ∇L (x,ω) = −σt (x)L (x,ω) + σs (x)

∫
S2
fp (x,ω ·ψ)L (x,ψ) dψ, (2)

where, compared to the time-dependent version, L is time-independent and there
is no partial derivative with respect to time. This corresponds to the case where
the light sources are constant over time, or change very slowly relative to the
speed of light.

We can define a Green’s function T sm (Xo,Xi) for the stationary case ex-
actly analogously the time-dependent case. As Equation (1) is linear and shift-
invariant with respect to time, we expect that

T sm (Xo,Xi) =

∫ ∞
0

Tm (Xo,Xi, τ) dτ. (3)

This relationship is often assumed in the literature [4, 1, 3]; we provide an exact
statement and formal proof in Proposition 1 below. Equation (3) allows us to
interpret the pathlength-resolved Green’s function Tm (Xo,Xi, τ) in two equiv-
alent ways: First, Tm describes the temporal propagation of a pulse of light of
infinitesimal duration through the scattering medium. Second, Tm decomposes
T sm into components, each corresponding only to photons that travel a specific
pathlength τ inside the medium.
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Proposition 1. Let L (x,ω, t) be the solution to the time-dependent RTE

1

c

∂L (x,ω, t)

∂t
+ ω · ∇L (x,ω, t) =− σt (x)L (x,ω, t)

+ σs (x)

∫
S2
fp (x,ω ·ψ)L (x,ψ, t) dψ, (4)

subject to boundary conditions

L (x,ω, t) = g (x,ω) δ (t) , (x,ω) ∈ Γi, (5)

L (x,ω, t) = 0, (x,ω) ∈ (M× S2) \ Γi, t = 0, (6)

L (x,ω, t) = 0, (x,ω) ∈ (M× S2), t < 0. (7)

Let Ls (x,ω) be the solution to the stationary RTE

ω · ∇Ls (x,ω) = −σt (x)Ls (x,ω) + σs (x)

∫
S2
fp (x,ω ·ψ)Ls (x,ψ) dψ, (8)

subject to boundary conditions

Ls (x,ω, t) = g (x,ω) , (x,ω) ∈ Γi. (9)

Then,

Ls (x,ω) =

∫ ∞
0

L (x,ω, t) dt. (10)

Proof. Let L̃ (x,ω, s) = L{L (x,ω, t)} be the Laplace transform of L (x,ω, t)
with respect to time. Applying the Laplace transform to Equation (4), it becomes

s

c
L̃ (x,ω, s) + ω · ∇L̃ (x,ω, s) = −σt (x) L̃ (x,ω, s)

+ σs (x)

∫
S2
fp (x,ω ·ψ) L̃ (x,ψ, s) dψ. (11)

If we define

σ̃a (x, s) = σa (x) +
s

c
, (12)

σ̃t (x, s) = σs (x) + σ̃a (x, s) , (13)

then we can rearrange the terms in Equation (11) to bring it in a form analogous
to the stationary RTE (8),

ω · ∇L̃ (x,ω, s) = −σ̃t (x, s) L̃ (x,ω, s) + σs (x)

∫
S2
fp (x,ω ·ψ) L̃ (x,ψ, s) dψ.

(14)
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The stationary RTE (8) can be rewritten equivalently into an integral equation
known as the volume rendering equation [2],

Ls (x,ω) =a (x,x∂M (x,ω)) g (x∂M (x,ω) ,ω)

+

∫ r∂M(x,ω)

0

a (x,x− r′ω)σs (x− r′ω)∫
S2
fp (x− r′ω,ω ·ψ)Ls (x− r′ω,ψ) dψ dr′. (15)

where for each point x ∈ S and direction ω ∈ S2, we denote

r∂M (x,ω) = min {r : x− rω ∈ ∂M} , (16)

x∂M (x,ω) = x− r∂M (x,ω)ω, (17)

and where a (x,y) is volumetric attenuation along the line segment connecting
x,y ∈M,

a (x,y) = exp

(
−
∫ ‖x−y‖

0

σt

(
x− rω

(
y

h−→ x
))

dr

)
. (18)

We can similarly rewrite Equation (14) into the following equivalent integral
form,

L̃ (x,ω, s) =ã (x,x∂M (x,ω) , s) L̃ (x∂M (x,ω) ,ω, s)

+

∫ r∂M(x,ω)

0

ã (x,x− r′ω, s)σs (x− r′ω)∫
S2
fp (x− r′ω,ω ·ψ) L̃ (x− r′ω,ψ, s) dψ dr′. (19)

In Equation (19), we have

ã (x,y, s) = exp

(
−
∫ ‖x−y‖

0

σ̃t

(
x− rω

(
y

h−→ x
)
, s
)

dr

)
, (20)

and using Equations (13) and (18),

ã (x,y, s) = exp
(
−s
c
‖x− y‖

)
a (x,y) . (21)

Using Equation (21), we can rewrite (19) as

L̃ (x,ω, s) = exp
(
−s
c
r∂M (x,ω)

)
a (x,x∂M (x,ω)) L̃ (x∂M (x,ω) ,ω, s)

+

∫ r∂M(x,ω)

0

exp
(
−s
c
r′
)
a (x,x− r′ω)σs (x− r′ω)∫

S2
fp (x− r′ω,ω ·ψ) L̃ (x− r′ω,ψ, s) dψ dr′. (22)
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From the properties of the Laplace transform, we have that for any function
f (t),

L−1
{

exp
(
−s
c
r
)
f (s)

}
= f

(
t− r

c

)
. (23)

Applying the inverse Laplace transform to Equation (22), and using the property
of Equation (23) and the boundary condition (5), we have

L (x,ω, t) =a (x,x∂M (x,ω)) g (x∂M (x,ω) ,ω) δ

(
t− r∂M (x,ω)

c

)
+

∫ r∂M(x,ω)

0

a (x,x− r′ω)σs (x− r′ω)∫
S2
fp (x− r′ω,ω ·ψ)L

(
x− r′ω,ψ, t− r′

c

)
dψ dr′. (24)

Finally, let

G (x,ω) =

∫ ∞
0

L (x,ω, t) dt. (25)

Using the boundary condition of Equation (7), we have∫ ∞
0

L
(
x,ω, t− r

c

)
dt = G (x,ω) , r ≥ 0. (26)

Then, integrating both sides of Equation (24) over time and using equation (26),
we have

G (x,ω) =a (x,x∂M (x,ω)) g (x∂M (x,ω) ,ω)

+

∫ r∂M(x,ω)

0

a (x,x− r′ω)σs (x− r′ω)∫
S2
fp (x− r′ω,ω ·ψ)G (x− r′ω,ψ) dψ dr′. (27)

Comparing Equation (27) with the stationary volume rendering equation (15),
we see that they are identical. Therefore, we can identify Ls (x,ω) withG (x,ω).�

Using Equation (10) from Proposition 1, Equation (3) follows after perform-
ing the change of variables τ = ct.

2 Local Similarity Relations in Pathlength-Resolved Case

We prove Lemma 1 of the main paper, restated below for convenience.

Lemma 1. Let {an,l (x, τ) , n > 0,−n ≤ l ≤ n} be the coefficients of the spherical-
harmonics expansion of the solution L (x,ω, τ) of Equation (4) at some point
x ∈ M, and {fp,n (x) , n > 0} the coefficients of the Legendre expansion of fp
at that point. If there exists N > 0 such that an,l (x, τ) = 0 for all n > N , then
two materials m, m∗ will produce equal values L (x,ω, τ) if, for 1 ≤ n ≤ N ,

σa (x) = σ∗a (x) , (28)

σs (x) (1− fp,n (x)) = σ∗s (x)
(
1− f∗p,n (x)

)
. (29)
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Proof. The proof follows easily from Equation (14). The form of this equation
is exactly analogous to the stationary RTE of Equation (8), except for replacing
σa (x) with σ̃a (x, s) from Equation (12). We can then directly apply to it the
similarity relations derived for the stationary case in [5, 6], to obtain,

σa (x) +
s

c
= σ∗a (x) +

s

c∗
, (30)

σs (x) (1− fp,n (x)) = σ∗s (x)
(
1− f∗p,n (x)

)
. (31)

If we assume that the two materials have the same index of refraction, and
therefore the same speed of light c = c∗ in their interior, then Equation (30)
reduces to Equation (28). �

Note that, according to Equation (30), in materials with different index of
refraction, the local similarity relations for the absorption coefficient σa are dif-
ferent in the pathlength-resolved than in the stationary cases. This relates to
the fact that, for a fixed value of optical pathlength τ , light will have travelled
different (geometric) distances inside the two materials. As a result, the absorp-
tion coefficient must change in order for the volumetric attenuation (18) in the
two materials to be the same. We do not consider this case in this paper, as we
assume that the index of refraction is known.

3 Non-Local Ambiguities in Pathlength-Resolved Case

In this section, we prove Lemma 2 of the main paper. Our proof is based on
the formulation of volumetric light transport presented in [2], which discretizes
pathlength τ at a resolution h as τ = nh, n ∈ N. We summarize that formulation
in the form of the following proposition.

Proposition 2. For any step-size h, we define an n-step path x̄ as an ordered
sequence of points in the medium M,

x̄ = x0
h−→ x1

h−→ . . .
h−→ xn, (32)

where
h−→ indicates that each segment of the path has length h,

‖xj − xj−1‖2 = h, ∀j ∈ {1, . . . , n} . (33)

We denote the space of all such paths as Tn. If h� 1/σt (x) for all x ∈M, then
any entry of the light transport matrix Tm at pathlength τ = nh can be written
as

Tm (Xo,Xi, nh) =

∫
Tn
∆ (x̄,Xo,Xi) s̄m (x̄) dx̄, (34)

where

∆ (x̄,Xo,Xi) = δ (x (Xi)− o (x̄)) · δ (ω (Xi)− ωo (x̄))

δ (x (Xo)− e (x̄)) · δ (ω (Xo)− ωe (x̄)) . (35)
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Fig. 1: Schematic for proof of Lemma 2

and the term s̄m determines the path’s radiance contribution,

s̄m (x̄) =

n−1∏
j=1

sm

(
xj−1

h−→ xj
h−→ xj+1

)
, (36)

sm

(
xj−1

h−→ xj
h−→ xj+1

)
=1− hσt (xj−1) + hσs (xj−1) fp (xj−1, 0) , ω

(
xj−1

h−→ xj

)
= ω

(
xj

h−→ xj+1

)
,

hσs (xj−1) fp

(
xj−1,ω

(
xj−1

h−→ xj

)
· ω
(
xj

h−→ xj+1

))
, otherwise.

(37)

Intuitively, Proposition 2 provides an alternative path-based formulation for light
transport in scattering media. Compared to the formulation used in the main
paper (Equation (11) of the main paper), the path integral is over paths con-
sisting of n segments of fixed length h, instead of arbitrary length. At the end
of each such segment, a photon will undergo a propagation event and will: 1)
continue traveling in the same direction (probability 1− hσt + hσsfp (0)); or 2)
scatter towards a new direction determined by the local phase function (prob-
ability hσs). The length of a path is determined completely by the number of
such segments, τ (x̄) = nh. Therefore, the path sampling function ∆ needs only
reject paths based on their endpoints, and is not a function of pathlength.

We now use the above proposition to prove Lemma 2 of the main paper,
restated below for convenience.

Lemma 2. Using pathlength decomposition, the configuration of Figure 2(a) of
the main paper provides measurements of the form

Iτ =


Qτ +

∑
p∈k(n)

σs [nh, p]
π∫
0

fp ([nh, p], θ)Rτ,p (θ) dθ, τ = 2nh,

Sτ +
∑

p∈k(n)

σt [nh, p]Tτ,p, τ = (2n+ 1)h,
(38)
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where Qτ and Rτ,p (θ) are functions of material parameters {m [d, p] , d < nh};
and Sτ and Tτ,p of {m [d, p] , d < nh;σs [nh, p] ; fp ([nh, p], θ)}.

Proof. We prove this lemma in the two-dimensional case for simplicity, with the
proof being exactly analogous in the three-dimensional case. We refer to Figure 1
throughout the proof.

From Equations (36)-(37), the radiance contribution of a path will depend
on the material parameters of a specific voxel p, d only if the path includes a
propagation event at a point inside that voxel.

Consider first a path x̄ with endpoints xi, xo on the material boundary and
that includes a propagation event at a point xj inside the material layer at
depth d = nh, as shown in Figure 1(a). The distance v of this point from the

volume boundary is v > (n− 1)h. The lengths of the sub-paths xi
h−→ . . .

h−→ xj ,

xj
h−→ . . .

h−→ xo, are at least equal to v; given that they must be integer multiples
of h, we conclude that each of the subpaths must consist of at least n segments.
Then, the entire x̄ must have at least 2n segments. Conversely, given any point
xj inside the material layer at depth d = nh, we can always connect it to
the material boundary with subpaths of n segments each. Therefore, we have
shown that paths x̄ with endpoints on the material boundary and that have a
propagation event inside voxels at depth d = nh have length τ (p) ≥ 2nh.

Consider again a path x̄ with endpoints xi, xo on the material boundary. We
now assume that it includes two consecutive propagation events at points xj−1,
xj inside the material layer at depth d = nh, without a change in direction at xj ,
and with xj+1 being at a layer of depth d < nh. This is shown in Figure 1(b). As
in the previous case, the distance of xj−1 from the boundary is v1 > (n− 1)h,

and therefore the sub-path xi
h−→ . . .

h−→ xj−1 has at least n segments. The
distance of xj+1 from the boundary is v2 > (n− 2)h, and therefore the sub-

path xj
h−→ . . .

h−→ xo has at least n− 1 segments. Then, together with segments

xj−1
h−→ xj and xj

h−→ xj+1, the entire x̄ must have at least 2n + 1 segments.
Conversely, given any points xj−1, xj , xj+1 as above, we can always create a path

of 2n+1 segments with endpoints on the boundary and with xj−1
h−→ xj

h−→ xj+1

as a subpath. Therefore, we have shown that paths x̄ of this kind have length
τ (p) ≥ 2nh.

Consider now the measurement I2nh captured for pathlength τ = 2nh from
the source-sensor configuration of Figure 1(c). By definition, I2nh will be equal
to Tm (Xs,Xs, 2nh) and therefore, using Equation (34), equal to the sum of
radiance contributions from paths x̄ ∈ T2n with endpoints xs and appropriate
starting and ending directions. All such paths are completely contained inside
a circle of center xs and radius r = d = nh. An arc of this circle is shown in
Figure 1(c).

From the previous discussion, all paths contributing to I2nh will have at most
one propagation event in layer d = nh, and no propagation events inside layer
d = (n+ 1)h. For paths x̄ that have no propagation events inside layer d = nh,
Equations (36)-(37) imply that their radiance contributions s̄m (x̄) depend only
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on material parameters of voxels at smaller depths d < nh. If we denote by
B ⊂ T2n the set of all such paths, then we can define

Q2nh =

∫
B

∆ (x̄,Xo,Xi) s̄m (x̄) dx̄. (39)

Based on the above discussion, Q2nh is a function only of material parameters
{m [d, p] , d < nh}.

For paths x̄ that have one propagation event xJ in layer d = nh, from
Equations (36)-(37) we can write their radiance contributions in the form

s̄m (x̄) =

J−1∏
j=1

sm

(
xj−1

h−→ xj
h−→ xj+1

)
· hσs [d, p] fp ([d, p] , θ)

·

 2n−1∏
j=J+1

sm

(
xj−1

h−→ xj
h−→ xj+1

)
,σs [d, p] fp ([d, p] , θ)R2nh,x̄. (40)

where {d, p} is the voxel at layer d = nh containing point xJ , and θ is the change
in direction at that point (see Figure 1(c)). The term R2nh,x̄ is a function only of
material parameters {m [d, p] , d < nh}, given that it corresponds to propagation
events at voxels of depth d < nh. If C{d,p},θ ⊂ T2n is the set of all such paths
for a specific voxel {d, p} and angle θ, then we can write their total radiance
contributions as

L{d,p},θ = σs [d, p] fp ([d, p] , θ)R2nh,p (θ) (41)

R2nh,p (θ) ,
∫
C{d,p},θ

R2nh,x̄ dx̄. (42)

Given that for every voxel {d, p} there will be non-empty sets C{d,p},θ ⊂ T2n

for multiple values θ, we can write the total radiance contributions for all paths
with xJ in {d, p} as,

L{d,p} =

∫ π

0

L{d,p},θ dθ = σs [d, p]

∫ π

0

fp ([d, p] , θ)R2nh,p (θ) dθ. (43)

The term L{d,p},θ will be non-zero for all values of p for which the voxel intersects
with the circle in Figure 1(c). If we denote by k (n) the set of such values, we
can express the contributions of all paths that have one propagation event at
layer d = nh as,

Ld =
∑

p∈k(n)

L{d,p} =
∑

p∈k(n)

σs [d, p]

∫ π

0

fp ([d, p] , θ)R2nh,p. (44)
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Finally, we can write the measurement I2nh as the sum of Q2nh and Ld which,
using Equations (39) and (44), becomes,

I2nh = Q2nh +
∑

p∈k(n)

σs [d, p]

∫ π

0

fp ([d, p] , θ)R2nh,p. (45)

This is the first part of the desired Equation (38).
The derivation of the second part is similar. At pathlength τ = (2n+ 1)h,

the measurement I(2n+1)h includes contributions from four types of paths: 1)
paths that have no propagation events in voxels at depth d = nh; 2) paths that
only have one propagation event in voxels at depth d = nh; 3) paths that have
two propagation events in voxels at depth d = nh, with a change in direction in
both events; and 4) paths of the form of Figure 1(b).

The contributions for paths of types 1-3 are included in the term S(2n+1)h,
which therefore is a function only of material parameters {m [d, p] , d < nh}
(paths of type 1) and {σs [nh, p] ; fp ([nh, p], θ)} (paths of type 2 and 3).

Paths of x̄ type 4 will have a radiance contribution of the form

s̄m (x̄) =

J−1∏
j=1

sm

(
xj−1

h−→ xj
h−→ xj+1

)
· (1− hσt [d, p] + hσs [d, p] fp ([d, p] , 0))

·

 2n−1∏
j=J+1

sm

(
xj−1

h−→ xj
h−→ xj+1

)
,σt [d, p]T(2n+1)h,x̄ + S(2n+1)h,x̄. (46)

The terms S(2n+1)h,x̄ and T2nh,x̄ (2n+ 1)h depend only on material parame-
ters {m [d, p] , d < nh;σs [nh, p] ; fp ([nh, p], θ)}. The terms S2nh,x̄ are included
in S(2n+1)h, whereas terms T(2n+1)h,x̄ for different paths are accumulated into
T(2n+1)h,p. By summing over multiple voxels d, p for d = nh and p ∈ k (n), we
arrive at the second part of Equation (38). �

4 Initialization

We discuss the two initialization procedures used in Algorithm 1 of the main
paper.

Multi-resolution initialization. In this first approach, we begin by assuming
that the unknown volume is homogeneous, that is, that there is a single set of
material parameters everywhere. Running Algorithm 1 produces a homogeneous
material estimate. We then voxelize the volume at progressively higher material
resolutions; at each resolution, we rerun Algorithm 1 to recover material param-
eters at that resolution, using algorithm outpt from the previous resolution as
initialization. We repeat this process unti we reach the highest material voxel
resolution we consider, 2 mm.
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For the original, homogeneous run of Algorithm 1, we initialize the material
parameters to g = 0 (uniform phase function), σa = 0, and σs = 10 mm−1.
We use these values to bias the path sampling algorithm towards exploring the
entire material volume.

Greedy depth-wise initialization. When using pathlength-decomposed mea-
surements with a frontlighting configuration, as in Figure 2(b) of the main paper,
Lemma 2 and the recursive inference argument discussed in Section 4 of the main
paper suggest a different way to do initialization. Specifically, starting at n = 1
and iteratively at every n, we use Algorithm 1 to process only the measure-
ments at pathlength τ = nh and to optimize only for the material parameters
at voxels of depth d = τ/2 (up to the voxelization resolution). At every iter-
ation, for voxels at lower depths, we fix the material parameters at the values
recovered at previous iterations of this recursive procedure. At the end of the
recursion, we can use the parameter estimates at every voxel recovered using the
above procedure to initialize another run of Algorithm 1, which simultaneously
processes all measurements (including measurements from configurations other
than frontlighting), and simultaneously optimizes over all material parameters
in the volume.

In practice, whenever possible we combine both initialization procedures: At
every iteration of the multi-scale procedure, we do material inference at the cor-
responding resolution using the greedy depth-wise recursive procedure. At every
iteration of either the multi-resolution or the greedy depth-wise procedures, we
run a few iterations of Algorithm 1, instead of running it until full convergence.
In our experiments, we have found that the combined use of these two initial-
ization procedures significantly accelerates convergence.
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