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We do inverse scattering…

What kind of imaging to use?
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Empirical evaluation of imaging types

http://vision.seas.harvard.edu/inverse_transient

Code online soon!
try with your 
own imaging 

configurations

Large-scale inverse scattering simulation

density albedo phase functionsmoke volume

• 104 cores

• 106 images

• 105 unknowns

algorithm sketch

while (not converged)

• randomly sample a photon path

• compute path-segment terms

o radiance throughput when rendering images

o throughput gradient when rendering gradients

• aggregate terms into whole path contribution

• update image estimate
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challenging optimization problem:
• high-dimensional (105 unknowns)
• very nonlinear (“image” function)
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Monte Carlo gradient rendering
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• physically accurate (accounts for all scattering)
• generally applicable (all above imaging types)
• scalable (highly parallelizable)

computation-noise trade-off:

106 paths
3 hours

102 paths
10 secs
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• high-frequency input increases number of 
bounces before outputs look identical

material 1 material 2 material 3

• local similarity relations hold for both 
steady-state and transient imaging

resolving non-local ambiguities

t = d / c

d

It =  Q  +  f(md)  ⋅ R

only depend on layers before depth d

linear function of material at depth d

• uniquely infer volume layer-by-layer


