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Abstract

Hyperspectral images provide higher spectral resolu-
tion than typical RGB images by including per-pixel ir-
radiance measurements in a number of narrow bands of
wavelength in the visible spectrum. The additional spectral
resolution may be useful for many visual tasks, including
segmentation, recognition, and relighting. Vision systems
that seek to capture and exploit hyperspectral data should
benefit from statistical models of natural hyperspectral im-
ages, but at present, relatively little is known about their
structure. Using a new collection of fifty hyperspectral im-
ages of indoor and outdoor scenes, we derive an optimized
“spatio-spectral basis” for representing hyperspectral im-
age patches, and explore statistical models for the coeffi-
cients in this basis.

1. Introduction
Most cameras capture three spectral measurements (red,

green, blue) to match human trichromacy, but there is ad-
ditional information in the visible spectrum that can be ex-
ploited by vision systems. Hyperspectral images, meaning
those that provide a dense spectral sampling at each pixel,
have proven useful in many domains, including remote
sensing [2, 3, 5, 22, 35], medical diagnosis [10, 29, 33], and
biometrics [31], and it seems likely that they can simplify
the analysis of everyday scenes as well.

When developing vision systems that acquire and exploit
hyperspectral imagery, we can benefit from knowledge of
the underlying statistical structure. By modeling the inter-
dependencies that exist in the joint spatio-spectral domain,
we should be able to build, for example, more efficient sys-
tems for capturing hyperspectral images and videos, and
perhaps better tools for visual tasks such as segmentation
and recognition.

This paper seeks to establish the basic statistical struc-
ture of hyperspectral images of “real-world” scenes, such
as offices, streetscapes, and parks, that we encounter in
everyday life. Unlike previous analyses, which have sep-

arately considered the spectral statistics of point sam-
ples [18, 21, 25], we consider the spatial and hyperspectral
dimensions jointly to uncover additional structure. Using a
new collection of fifty hyperspectral images captured with
a time-multiplexed 31-channel camera, we evaluate differ-
ence choices of spatio-spectral bases for representing hy-
perspectral image patches and find that a separable basis is
appropriate. Then, we characterize the statistical proper-
ties of the coefficients in this basis and describe models that
capture these properties effectively.

2. Related Work
Our work is motivated by successes in analyzing and

modeling the statistical properties of grayscale images [1,
30, 39]. These models have proved valuable for infer-
ring accurate images from noisy and incomplete measure-
ments, with applications in denoising [12, 28] and restora-
tion [4, 20]. These low-level statistics have also found use
as building blocks for higher-level visual tasks such as seg-
mentation and object detection [7, 23, 36]. Our work is
also motivated by studies of the joint spatial-color structure
of trichromatic images (corresponding to human cone re-
sponses, or the standard RGB color space) [15, 19, 27, 32,
38], which may have implications for tasks such as demo-
saicking for efficient RGB image capture [14, 16] and com-
putational color constancy [6, 37]. Our goal in this paper is
to develop models that are even more powerful by consider-
ing hyperspectral data and by considering the joint statistics
of variations with respect to space and wavelength.

The present study is enabled by recent advances in hy-
perspectral capture systems, which include those based
on spatial-multiplexing with generalized color filter ar-
rays [41], spatial-multiplexing with a prism [11], time-
multiplexing with liquid crystal tunable filters [13, 17],
and time-multiplexing with varying illumination [24, 26].
Prior to these advances, studies of real-world spectra have
been limited to collections of point samples, such as those
collected by a spectrometer or spectroradiometer. These
studies have suggested, for example, that the spectral re-
flectances of “real-world” materials are smooth functions
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Figure 1. Hyperspectral Database of “real-world” images. Each image has a spatial resolution of 1392 × 1040 with thirty-one spectral
measurements at each pixel. Left: Camera sensitivity for each wavelength band. Right: Typical images of indoor and outdoor scenes from
the database, rendered in sRGB.

that can be represented with 6-8 principal components [19,
21, 25] (or a suitable sparse code [18]), and that the spectra
of daylight and other natural illuminants can be represented
with even fewer principal components [40]. Our goal in the
present study is to move beyond point samples, and to in-
vestigate variations in spectral distributions within spatial
neighborhoods.

We expect that accurate statistical models will aid in
the design of efficient hyperspectral acquisition systems.
Many proposed acquisition methods seek to reconstruct full
spectral images from a reduced set of measurements based
on assumptions about the underlying statistics [26, 41].
Such methods are likely to benefit from accurate statistical
models that are learned from real-world hyperspectral data.
These models may also prove useful for other applications,
such as relighting, segmentation, and recognition.

Other hyperspectral datasets that are related to that intro-
duced here include those of Hordley et al. [17] and Yasuma
et al. [41]. These datasets include 22 and 32 hyperspec-
tral images, respectively, and they are focused on objects
captured with controlled illuminants in laboratory environ-
ments. More related is the database of 25 hyperspectral im-
ages of outdoor urban and rural scenes captured by Foster
et al. [13]. A primary aim of our work has been to capture
and analyze a larger database that includes both indoor and
outdoor scenes.

3. Hyperspectral Image Database
To enable an empirical analysis of the joint spatio-

spectral statistics of real-world hyperspectral scenes, we
collected a database of fifty images under daylight illu-
mination, both outdoors and indoors, using a commercial
hyperspectral camera (Nuance FX, CRI Inc.) The camera
uses an integrated liquid crystal tunable filter and is capable
of acquiring a hyperspectral image by sequentially tuning
the filter through a series of thirty-one narrow wavelength
bands, each with approximately 10nm bandwidth and cen-
tered at steps of 10nm from 420nm to 720nm. Figure 1 (left)
shows the relative sensitivity of the camera for each wave-
length band, accounting for both the quantum-efficiency of
the 12-bit grayscale sensor and the per-band transmittance

of the effective filters. The camera is equipped with an apo-
chromatic lens (CoastalOpt UV-VIS-IR 60mm Apo Macro,
Jenoptik Optical Systems, Inc.) and in all cases we used
the smallest viable aperture setting. The combination of the
apo-chromatic lens and the avoidance of a mechanical filter
wheel allows us to acquire images that are largely void of
chromatic aberration and mis-alignment. To avoid contam-
inating the statistics by having different per-band noise lev-
els, we did not vary the exposure time across bands or nor-
malize the captured bands with respect to sensitivity. All re-
sults in the following sections must therefore be interpreted
relative to the camera sensitivity function. However, the
appendix includes a discussion on statistics computed after
normalizing for the sensitivity.

Due to the use of small apertures and the low transmit-
tance of individual bands, the total acquisition times for an
entire image (i.e., all wavelength bands) are high and vary
from fifteen seconds to over a minute. Accordingly, all im-
ages were captured using a tripod and by ensuring mini-
mal movement in the scene. In the interest of having a di-
verse dataset, we have captured images with movement in
some regions— but these regions (and other areas affected
by dust, etc.) are masked out manually before analysis. We
note that as a result, any regions with people in the captured
scenes are masked out, and our analysis does not include
samples of human skin tones.

The captured dataset includes images of both indoor and
outdoor scenes featuring a diversity of objects, materials
and scale (see Fig. 1 for a few example images rendered
in sRGB). We believe the database to be a representative
sample of real-world images, capturing both pixel-level ma-
terial statistics and spatial interactions induced by texture
and shading effects. In addition to the analysis here, these
images may be useful “ground truth” to design and evalu-
ate methods for acquisition and vision tasks. We have also
captured twenty-five additional images taken under artificial
and mixed illumination, and while these are not used for the
analysis presented in this work, they are being made avail-
able to the community along with the fifty natural illumina-
tion images. The entire database is available for download
at http://vision.seas.harvard.edu/hyperspec/.

http://vision.seas.harvard.edu/hyperspec/
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Figure 2. General basis for 8 × 8 hyper-spectral patches learned
across the database. Left: most significant basis vectors (in read-
ing order) rendered in RGB. Right: variance of the coefficients for
the first 200 basis vectors. The variance decays rapidly indicating
that a small proportion of components are sufficient for accurate
reconstruction.

4. Spatio-Spectral Representation
In this section, we explore efficient representations

for hyperspectral images. As is common practice with
grayscale and RGB images, we first divide the entire im-
age into patches and consider the properties of each patch
independently. Let X[n, l] be a random P × P hyperspec-
tral image patch, where n ∈ {1, . . . P}2 and l ∈ {1, . . . 31}
index pixel location and spectral band respectively. For the
rest of the paper, we choose the patch size P = 8, but the re-
sults and conclusions from different choices of P are quali-
tatively the same.

Since X is high-dimensional, we seek a representation
that allows analysis in terms of a smaller number of com-
ponents. Formally, we wish to find an optimal orthonormal
basis set {Vi} and express X in terms of scalar coefficients
xi as

X[n, l] = µ[n, l] +
∑

i

xiVi[n, l], (1)

where xi = 〈X − µ, Vi〉, and µ is the “mean patch”.
We begin by learning a set of general basis vectors us-

ing principal component analysis (PCA) on patches cropped
from images in the database. Figure 2 shows the top twenty
components rendered in RGB, as well as the variance for
the top 200 components. We see that the first two Vi essen-
tially correspond to spatially-constant “DC” components
with distinct spectral variation, followed by vertical and
horizontal derivative components. We also find that there
is a sharp fall off in variance indicating that X can be de-
scribed accurately by a relatively small number of coeffi-
cients. Indeed, the first 20 basis vectors (out of a total of
nearly 2000) account for 99% of the total variance.

4.1. Separable Basis Components

We observe that the basis set in Fig. 2 has sets of vectors
with similar spatial patterns but different spectra or “col-
ors”. Therefore, we explore the utility of a “separable” basis
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Figure 3. Learned separable basis, with most significant spatial
components {Sj} (left) and spectral components {Ck} (right).
The overall basis vectors for a patch are then given by Sj [n]Ck[l],
for ever pair (j, k).

set, meaning one in which every Vi can be decomposed into
a Cartesian product of separate spatial and spectral compo-
nents. Notationally, we write Vi[n, l] = Sj [n]Ck[l], where
{Sj}P

2

j=1 and {Ck}31k=1 are orthonormal bases spanning the
space of monochrome P × P spatial patches and the space
of 31-channel spectral distributions, respectively. Note that
by construction the components {Vi} formed by different
combinations of Sj and Ck also form an orthonormal ba-
sis. Again, we use PCA to learn {Sj}j from monochrome
patches pooled across all bands and {Ck}k from the spec-
tral distributions at individual pixels. The combined spatio-
spectral basis vectors are then formed as Sj [n]Ck[l], for all
pairs of j and k.

Figure 3 shows the first few spatial and spectral compo-
nents, {Sj} and {Ck}, learned in this manner. The spatial
components correspond to a DCT-like basis used commonly
for modeling grayscale images, with S1 corresponding to
the “DC” component. The spectral components in turn re-
semble a Fourier basis scaled by the camera’s sensitivity
function (see Fig. 1).

In Fig. 4, we compare this learned separable basis to the
one derived with general PCA in terms of the relative re-
construction error

ε(i) = log10(E|X −X0:i|2/E|X|2), (2)

where X0:i is the estimate of X reconstructed using only
the first i components. A wavelet-based separable basis,
with the spatial components {Sj} corresponding to Haar
wavelets, is also included for comparison. We see that
the error curves of the general and learned separable bases
match almost exactly, indicating that the separable basis is
equally efficient.



Figure 4. Comparison of different spatio-spectral basis sets in
terms relative reconstruction error using a limited number of com-
ponents. The figure compares a general basis set to one restricted
to having separable spatial and spectral components. The sepa-
rable basis has near identical reconstruction error to the general
basis, indicating that it is equally efficient. A separable set with
Harr wavelets as the spatial basis is also shown for comparison.
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Figure 5. Variances in combinations with different spectral com-
ponents, for the first five spatial components. The horizontal grid
lines correspond to the values of the DC component S1. Note that
the different Si have similar decays along the spectral dimension.

We next look at the variance along these separable com-
ponents in Fig. 5, which compares the variance for the
top spatial components when combined with each of the
top spectral components. We note that the total variance
in the different spatial components is distributed in sim-
ilar proportions along the spectral dimension. Figure 6
provides another look at the variances of different compo-
nents, and shows the relative ordering of the separable bases
Sj [n]Ck[l] in terms of variance. Only the top fifteen sepa-
rable components are shown for clarity of display. Note
that combinations of the first spectral component with vari-
ous spatial components have higher variance than the latter
spectral components.

5. Coefficient Models
Having identified a separable spatio-spectral basis we

now explore statistical models for coefficients in this basis.
We look at distributions for each coefficient individually, as
well as joint models for different spectral coefficients along
the same spatial basis.
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Figure 6. Top fifteen separable components Vi expressed in terms
of combinations of the spatial and spectral components Sj andCk.
Note that combinations of the first spectral component C1 with
various Sj often rank higher than the combinations of S1 (i.e. DC)
with Ck, k > 1. This figure illustrates the relative importance of
spatial to spectral resolution in terms of accurately representing a
hyperspectral image.
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Figure 7. Empirical histograms for DC coefficients correspond-
ing to different spectral components. In addition to having high
variance, these coefficients show comparatively less structure than
those corresponding to higher spatial components (see Fig. 8).

5.1. Modeling Individual Coefficients

Let xjk be the coefficient of X in the basis component
Sj [n]Ck[l]. We begin by looking at empirical distributions
of the “DC” coefficients x1k in Fig. 7. We find that these
distributions differ qualitatively from those of the other co-
efficients (see Fig. 8), and exhibit comparatively less struc-
ture. In applications with grayscale and RGB images, DC
(or “scaling”) coefficients are found to be poorly described
by standard probability distributions and are often simply
modeled as being uniform [6, 28], and the same could be
done here.

The statistics of the higher spatial coefficients
(xjk for j > 1) are more interesting. Figure 8 shows
empirical distributions of x21 and x22 (the second spatial
component). We see that these distributions are zero-mean,
uni-modal, symmetric, and more kurtotic than a Gaussian
distribution with the same variance, with heavier tails and
a higher probability mass near zero. This matches intuition
from grayscale and RGB image analysis that higher spatial
sub-band coefficients are “sparse”.

We use a finite mixture of zero-mean Gaussians to model
the distribution of these coefficients. Gaussian mixture
models have been used for various applications with rea-
sonable success [8, 28], and they have the advantage of al-
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Figure 8. Distributions of different spectral coefficients corre-
sponding to the second spatial component. The empirical distri-
butions (shown in black) are uni-modal, symmetric, and heavier-
tailed than a Gaussian distribution with the same variance (shown
in red for comparison). They are well-modeled by a mixture of
eight Gaussians (shown in blue).

lowing tractable inference. We define

p(xjk) =
Z∑

z=1

p(zjk = z)N
(
xjk|0, σ2

jk,z

)
, (3)

where zjk ∈ {1, . . . Z} is a latent index variable indicating
that xjk is distributed as a Gaussian with the corresponding
variance σ2

jk,z . Without loss of generality, we assume that
the mixture components are sorted by increasing variance.

The model parameters {p(zjk = z), σ2
jk,z}z are es-

timated from the database using Expectation Maximiza-
tion (EM) [9], and in practice we find that a mixture of 8
Gaussians (i.e., Z = 8) provides accurate fits to the em-
pirical distributions for all coefficients. These fits for the
coefficients x21 and x22 are shown in Fig. 8.

5.2. Joint Models

Since the spatio-spectral basis vectors have been esti-
mated through PCA, it follows that xjk and xjk′ will be
uncorrelated for k 6= k′, i.e. E(xjkxjk′) = 0. However,
given the model for individual coefficients in (3), this does
not necessarily imply that they will be independent. In-
deed, different spatial coefficients at the same spatial loca-
tion in grayscale images are known to be related [8]. We
now demonstrate that different spectral coefficients along
the same spatial basis are also mutually dependent, and pro-
pose a model that encodes these dependencies.

We begin by examining whether knowing the value of
the mixture index zjk carries any information about the
statistics of the coefficient xjk′ for a different spectral
component k′ along the same spatial basis j. We define
σ2

jk′|zjk
(z) to be the variance of xjk′ conditioned on the

mixture index zjk being z, and estimate it from a set of
training patches {Xi} from the database, as

σ2
jk′|zjk

(z) =

∑
i p(zjk = z|xi

jk)(xi
jk′)2∑

i p(zjk = z|xi
jk)

, (4)
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Figure 9. Relationship between the variances of different spectral
coefficients {x2k} for the same spatial basis S2. We find that when
x21 belongs to a mixture component having higher standard devi-
ation σ21,z (horizontal axis), the other spectral components x2k′

have higher standard deviations σ2k′|z21(z) (vertical axis) as well.
This implies that the different spectral coefficients are not inde-
pendent, because if they were, these curves would be horizontal.

where p(zjk = z|xi
jk) is computed for every training coef-

ficient as

p(zjk = z|xi
jk) =

p(zjk = z)N (xi
jk|0, σ2

jk,z)∑
z′ p(zjk = z′)N (xi

jk|0, σ2
jk,z′)

. (5)

Figure 9 shows these variances for different coefficients
x2k′ conditioned on the mixture index z21 for the first spec-
tral coefficient, and compares them to the corresponding
mixture component variances σ2

21,z . We see that the dif-
ferent spectral coefficients are indeed related. When the
first spectral coefficient x21 belongs to a mixture compo-
nent having higher variance, the expected variances of the
other spectral coefficients {x2k′} increase as well.

To capture this relationship, we update the model in
(3) by including a joint distribution p({zjk}k) on the mix-
ture indices corresponding to different spectral coefficients
along the same spatial basis as

p({xjk}k) =
∑

z1,z2,...

p({zjk = zk}k)
∏
k

N (xjk|0, σjk,zk
).

(6)
To fit this model, we first learn {p(zjk = z), σjk,z} for
each coefficient xjk individually as before, and then we es-
timate the joint distribution of the indices p({zjk}k) from
the training patches {Xi} as

p({zjk = zk}k) ∝
∑

i

∏
k

p(zjk = zk|xi
jk). (7)

Having fit this model, we can use the learned joint dis-
tribution of the mixture indices p({zjk}k) to reason about
the relationships between the corresponding coefficients
{xjk}k. Figure 10 shows the estimated conditional distribu-
tions p(z2k′ |z2k) for different pairs of spectral coefficients
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Figure 10. Conditional distributions of the mixture indices p(z2k′ |z2k) for different pairs of spectral coefficients along the same spatial
basis S2. The corresponding mixture component variances σ2

2k,z are also shown for reference. Knowing the value of the mixture index z2k

for one spectral coefficient changes the distribution of the index z2k′ , corresponding to a different spectral coefficient, from the marginal
distribution p(z2k′) (shown with dotted black line for comparison). Broadly, these graphs suggest that higher/lower magnitudes of one
coefficient make higher/lower magnitudes respectively for other coefficients, along the same spectral basis, more likely.

along the spatial basis S2. As expected, these distributions
are different from the marginal distribution p(z2k′) (also
shown for comparison). We find that conditioned on the
mixture index z2k having a value corresponding to higher
mixture component variance, the index z2k′ for a differ-
ent spectral coefficient x2k′ is more likely to correspond to
higher variance mixture component as well, which is con-
sistent with our observations in Fig. 9. Therefore, observ-
ing a high magnitude value for one coefficient makes a high
value for another spectral coefficient along the same spatial
basis more likely. This joint model can be exploited during
inference, for example, when estimating a hyperspectral im-
age from noisy or incomplete observations.

6. Discussion
In this work, we analyzed the joint spatial and spec-

tral statistics of hyperspectral images using a new database
of real-world scenes. We found that a separable ba-
sis, composed of independent spatial and spectral compo-
nents, serves as an efficient representation for hyperspectral
patches, and we studied the relative variance in these com-
ponents. We then explored the statistical properties of coef-
ficients in this basis and found that higher-frequency spatial
components are accurately described by Gaussian mixture
models. We also established that for the same spatial sub-
band, different spectral coefficients are mutually dependent,
and we described a joint distribution for mixture indices for
different coefficients that encodes these dependencies.

A natural application of the statistical characterization
described in this paper is in hyperspectral imaging. Ac-
quisition systems should be constructed to exploit the in-
terdependencies and correlations between different compo-
nents so that they can efficiently acquire hyperspectral im-
ages with fewer measurements. General color filter array
patterns (such as those proposed in [41]) can be designed
to trade off spatial and spectral accuracy based on the rel-
ative variances of different components, and reconstruction
methods can use the joint coefficient models during esti-
mation. Similarly, these statistics are likely to be useful

when estimating “clean” hyperspectral images from obser-
vations degraded by noise, blur, chromatic aberration, etc.
The database can be also used as “ground truth” to evaluate
different strategies for these applications.

This paper presents a first look at spatio-spectral statis-
tics and representations for hyperspectral images. Future
work will include studying the statistics of specific classes
of objects or regions in hyperspectral images, and leverag-
ing these for vision applications. In addition to hyperspec-
tral object models for recognition, understanding the differ-
ence in the statistics of homogenous regions with variations
due to shading relative to that of regions that include mate-
rial boundaries may be useful for segmentation and recov-
ering “intrinsic images” [34].

Other avenues of future research include looking at rep-
resentations derived using more sophisticated techniques
such as independent component analysis and fields of ex-
perts [30], with the choice of representation likely to be
geared towards specific vision tasks. We shall also explore
using sparse codes, which have been previously proposed to
describe spatial and spectral components independently in
hyperspectral images [26]. Our observation about the mu-
tual dependence between spectral coefficients for different
spatial bands suggests that it would be useful to consider
joint spatio-spectral coding strategies.

Appendix: Camera-independent Statistics
As noted earlier, the analysis in the paper is performed

relative to the camera’s sensitivity function shown in Fig. 1.
Since this function is known, it is possible to compute the
corresponding statistics for hyperspectral images captured
by a different device with a different sensitivity, after mak-
ing appropriate assumptions about the observation noise in
the database. As a specific case of this, we look at proper-
ties of images captured by a hypothetical camera that has
a flat sensitivity function. These can be interpreted as the
properties of the underlying scene itself, without varying
attenuation applied to the different wavelength bands.

Formally, we relate the captured hyperspectral patch
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Figure 11. Basis vectors for hyperspectral patches from a camera
with uniform sensitivity. Left: Most significant joint basis vectors,
rendered in sRGB. Right: Spectral basis vectors {Ctk} that, com-
bined with the spatial vectors {Sj} in Fig. 3, define an efficient
separable basis.

X[n, l] to the true un-attenuated version Xt[n, l] as

X[n, l] = s[l]Xt[n, l] + z[n, l], (8)

where s[·] is the known camera sensitivity, and z[·] is ob-
servation noise. Following the analysis in Sec. 4, we
seek to find the optimal basis for Xt through an eigen-
decomposition of the covariance matrix EXtX

T
t . We as-

sume white Gaussian noise, z[n, l] i.i.d∼ N (0, σ2
z), which

gives us the following relation between the covariances of
X and Xt:

EX2
t [n, l] = s−2[l]

(
EX2[n, l]− σ2

z

)
,

EXt[n, l]Xt[n′, l′] = s−1[l]s−1[l′]EX[n, l]X[n′, l′],
if n 6= n′ or l 6= l′. (9)

We use the values of EXXT estimated from our database,
and we set the noise variance σ2

z to be equal to half of its
lowest eigen-value, i.e., half the variance along the least sig-
nificant basis vector. We can now compute the covariance
matrix for Xt, and the optimal basis vectors thus obtained
through PCA are shown in Fig. 11 (left).

Since X was shown in Sec. 4 to be represented effi-
ciently using a separable basis and the camera sensitivity
is the same for all pixels, it follows that the basis for Xt

is also separable, and composed of the same spatial basis
{Sj [n]} as for X and a spectral basis {Ctk[l]} shown in
Fig. 11 (right). As expected, from comparing Fig. 11 to
Fig. 3, we find that spectral basis vectors {Ctk[l]} for Xt

represent an orthogonalized version of {s−1[l]Ck[l]}.
Finally, we use our estimates of the covariance matrix of

Xt to explore how efficient the human cone responses are
at capturing the variance in the scenes in our database. We
find that the sub-space spanned by the CIE XYZ vectors
(designed to match the spectral response of human visual
system) account for 77.22% of the total variance in Xt. In

comparison, the first three eigen-vectors {Ctk}2k=0 account
for 99.14% of the total variation. However, it is important
to remember that human cone responses (as with any set
of sensors) are restricted to have non-negative responses at
all wavelengths. Also, the human visual system is likely to
have evolved in different environments, and to be optimal
for discriminative tasks that need not require capturing all
the spectral variation.
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