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Abstract. We present the focal flow sensor. It is an unactuated, monoc-
ular camera that simultaneously exploits defocus and differential motion
to measure a depth map and a 3D scene velocity field. It does so using an
optical-flow-like, per-pixel linear constraint that relates image derivatives
to depth and velocity. We derive this constraint, prove its invariance to
scene texture, and prove that it is exactly satisfied only when the sen-
sor’s blur kernels are Gaussian. We analyze the inherent sensitivity of
the ideal focal flow sensor, and we build and test a prototype. Experi-
ments produce useful depth and velocity information for a broader set of
aperture configurations, including a simple lens with a pillbox aperture.

Computational sensors reduce the data processing burden of visual sensing
tasks by physically manipulating light on its path to a photosensor. They ana-
lyze scenes using vision algorithms, optics, and post-capture computation that
are jointly designed for a specific task or environment. By optimizing which
light rays are sampled, and by moving some of the computation from electri-
cal hardware into the optical domain, computational sensors promise to extend
task-specific artificial vision to new extremes in size, autonomy, and power con-
sumption [1,2,3,4,5].

We introduce the first computational sensor for depth and 3D scene velocity.
It is called a focal flow sensor. It is passive and monocular, and it measures depth
and velocity using a per-pixel linear constraint composed of spatial and temporal
image derivatives. The sensor simultaneously exploits defocus and differential
motion, and its underlying principle is depicted in Figure 1. This figure shows
the one-dimensional image values that would be measured from a front-parallel,
Lambertian scene patch with a sinusoidal texture pattern, as it moves relative
to a sensor. If the sensor is a pinhole camera, the patch is always in focus, and
the images captured over time are variously stretched and shifted versions of the
patch’s texture pattern (Figure 1A). The rates of stretching and shifting together
resolve the time to contact and direction of motion (e.g., using [6]), but they
are not sufficient to explicitly measure depth or velocity. The focal flow sensor
is a real-aperture camera with a finite depth of field, so in addition to stretching
and shifting, its images exhibit changes in contrast due to defocus (Figure 1B).
This additional piece of information resolves depth and velocity explicitly.

Our main contribution is the derivation of a per-pixel linear equation,[
Ix Iy (xIx + yIy) (Ixx + Iyy)

]
· v + It = 0,
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Fig. 1. The focal flow principle. A: When a 1D pinhole camera observes a world
plane with sinusoidal texture, the image is also a sinusoid (black curve). Motion between
camera and scene causes the sinusoidal image to change in frequency and phase (blue
curve), and these two pieces of information reveal time to contact and direction of
motion. B: When a finite-aperture camera images a similar moving scene, the motion
additionally induces a change in image amplitude, because the scene moves in or out
of focus. This third piece of information resolves depth and scene velocity. C: We
show that, with an ideal thin lens and Gaussian blur κ(r), depth and 3D velocity can
be measured through a simple, per-pixel linear constraint, similar optical flow. The
constraint applies to any generic scene texture.

that relates spatial and temporal image derivatives to depth and 3D scene ve-
locity, and that is valid for any generic scene texture. Over an image patch,
depth and velocity are recovered simply by computing spatial and temporal
derivatives, solving a 4× 4 linear system for vector v ∈ R4, and then evaluating
analytic expressions for depth Z(v) and 3D velocity (Ẋ, Ẏ , Ż)(v) determined by
the physical characteristics of the calibrated sensor.

The focal flow cue is distinct from conventional passive depth cues like stereo
and depth from defocus because it directly measures 3D velocity in addition to
depth. It is also different because it does not require inferences about disparity or
blur; instead, it provides per-pixel depth in closed form, using a relatively small
number of multiply and add operations. The focal flow sensor might therefore
be useful for applications, such as micro-robotics [3], that involve motion and
that require visual sensing with low power consumption and small form factors.

We prove that this linear constraint is invariant to scene texture, that it exists
analytically whenever the optical system’s point spread functions are Gaussian,
and that no other class of radially symmetric point spread functions—be they
discs, binary codes, or continuous functions—provides the same capability. We
also analyze the inherent sensitivity of the focal flow sensor, and show the effec-
tiveness in practice of non-Gaussian aperture configurations including filter-free
apertures. We demonstrate a working prototype that can measure depth within
±5.5mm over a range of more than 15cm using an f/4 lens.
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1 Related Work

Motion & Linear Constraints. Differential optical flow, which assumes that
all images are in focus, is computable from a linear system of equations in a
window [7]. A closely related linear system resolves time to contact [6,8]. The
focal flow equation has a similar linear form, but it incorporates defocus blur
and provides additional scene information in the form of depth and 3D velocity.
Unlike previous work on time to contact [9], our focal flow analysis is restricted
to front-parallel scene patches, though experimental results suggest that useful
depth can be obtained for some slanted planes as well (see Figure 5).

Defocus. When many images are collected under a variety of calibrated camera
settings, a search for the most-in-focus image will yield depth [10]. This approach
is called depth from focus, and it is reliable but expensive in terms of time and
images captured. When restricted to a few images, none of which are guaranteed
to be in focus, a depth from defocus algorithm must be used [11]. This method
is more difficult because the underlying texture is unknown: we cannot tell if the
scene is a blurry picture of an oil painting or the sharp image of a watercolor,
and without natural image priors both solutions are equally valid. To reduce
ambiguity, most depth from defocus techniques require at least two exposures
with substantially different blur kernels, controlled by internal camera actuation
that changes the focal length or aperture diaphragm to manipulate the blur ker-
nel [11,12,13,14]. The complexity of recovering depth depends on the blur kernels
and the statistical image model that is used for inference. Depth performance
improves when well-designed binary attenuation patterns are included in the
aperture plane [15,16,17], and with appropriate inference, binary codes can even
provide useful depth from a single exposure [18,19,20].

Focal flow is similar to depth from defocus in that it relies on focus changes
over a small set of defocused images to reveal depth, and that it requires a
specific blur kernel. However, both the implied hardware and the computation
are different. Unlike multi-shot depth from defocus, our sensor does not require
internal actuation, and unlike binary aperture codes, it employs a continuous
radially symmetric filter. Most importantly, by observing differential changes in
defocus, it replaces costly inference with a much simpler measurement algorithm.

Differential defocus with Gaussian blur was previously considered by Farid
and Simmoncelli [21], who used it to derive a two-aperture capture sequence.
We build on this work by proving the uniqueness of the Gaussian filter, and by
exploiting differential motion to avoid aperture actuation.

Cue Combination. Our use of relative motion between scene and sensor means
that in many settings, such as robotics or motion-based interfaces, this cue comes
without an additional power cost. Previous efforts to combine camera/scene mo-
tion and defocus cues [22,23,24,25,26,27] require intensive computations, though
they often account for motion blur which we ignore. Even when motion is known,
equivalent to combining defocus with stereo, measuring depth still requires in-
ference [28,29]. The simplicity of focal flow provides an advantage in efficiency.
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2 The Focal Flow Constraint

In differential optical flow, a pinhole camera views a Lambertian object with a
temporally constant albedo pattern, here called texture and denoted T : R2 →
[0,∞). For now the texture is assumed to be differentiable, but this requirement
will be relaxed later when deriving focal flow. For front-parallel planar objects,
located at a time-varying offset (X,Y ) and depth Z from the pinhole, the camera
captures an all-in-focus image that varies in time t and pixel location (x, y) over
a bounded patch S on a sensor located a distance µs from the pinhole. The
intensity of this image P : S × R → [0, 1] is a magnified and translated version
of the texture, scaled by an exposure-dependent constant γ:

P (x, y, t) = γ T

(
Z(t)

−µs
x−X(t),

Z(t)

−µs
y − Y (t)

)
. (1)

It is well known that the ratios of the spatial and temporal derivatives of this
image are independent of texture, and so can reveal information about the scene.
A familiar formulation [7] provides optical flow (ẋ, ẏ) from image derivatives:

0 =
[
Px Py

] [ẋ
ẏ

]
+ Pt, (2)

while following [6] to split the translation and magnification terms:

0 =
[
Px Py (xPx + yPy)

]
u + Pt, (3)

u =[u1, u2, u3]T =

[
−Ẋµs

Z
,− Ẏ µs

Z
,− Ż

Z

]T
, (4)

provides texture-independent time to contact Z
Ż

= −1
u3

and direction of motion(
Ẋ
Ż
, Ẏ
Ż

)
=
(
−u1

µsu3
, −u2

µsu3

)
.

For focal flow, we replace the pinhole camera with a finite-aperture camera
having an ideal thin lens and an attenuating filter in the aperture plane. We
represent the spatial transmittance profile of the filter with the function κ :
R2 → [0, 1]. We assume that this function is radially symmetric, so that this
two-dimensional function of x and y can be written as a function of the single
variable r =

√
x2 + y2. However, we do not require smoothness, which allows

for pillboxes and binary codes as well as continuous filters. For a front-parallel
world plane at depth Z, the filter induces a blur kernel k on the image that is a
“stretched” version of the aperture filter:

k(r;Z) =
1

σ2(Z)
κ

(
r

σ(Z)

)
, (5)

where the magnification factor σ, illustrated in Figure 1C, is determined by
object depth, sensor distance, and in-focus depth µf :

σ(Z) =

(
1

Z
− 1

µf

)
µs. (6)
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Denoting by ∗ a convolution in x and y, we can write the blurred image I as

I(x, y, t) =k
(√

x2 + y2;Z(t)
)
∗ P (x, y, t). (7)

Unlike the pinhole image P , the ratios of the spatial and temporal derivatives
of this defocus-blurred image I depend on texture. This is because the constant
brightness constraint does not hold under defocus: pixel intensity changes both
as image features move and also as patch contrast is reduced away from the focal
plane. This difference, illustrated in Figure 1, implies that any finite-aperture
system for measuring optical flow will suffer a systematic error from defocus.
Mathematically, this appears as an additive residual term on the time derivative,
as shown in the following proposition.
Proposition.1For an ideal thin lens camera and front-parallel planar scene,

Ix =kx ∗ P, (8)

Iy =ky ∗ P, (9)

It =kt ∗ P + k ∗ Pt (10)

=− u1Ix − u2Iy − u3(xIx + yIy)−R, (11)

where, denoting by κ′ the distributional derivative of κ,

R(x, y, t;P, κ, Z, Ż) =
Ż

Z − µf
1

σ2(Z)

(
2κ

(
r

σ(Z)

)
+

r

σ(Z)
κ′
(

r

σ(Z)

))
∗P. (12)

The time-varying residual image R(x, y, t) changes with depth, velocity, and
camera design. It is troublesome because it also depends on the pinhole image
P , which is not directly measured. Only the blurred image I=k∗P is available.
This means that for almost all aperture filters, there is no way to express R using
scene geometry and image information alone—it is inherently texture-dependent.

However, we observe that for a very specific aperture filter, this source of error
can actually be transformed into a usable signal that resolves both depth and 3D
velocity. For this to happen, the aperture filter must be paired with a particular
linear image processing operation that, when combined with the filter, allows
the decomposition of residual image R into a depth/velocity factor (analogous
to u1) and an accessible measurement (analogous to Ix). To formally identify
such a filter and image operator, we seek triples (M,κ, v) of shift-invariant linear
image operators M (like ∂x and ∂y), aperture filters κ, and scalar depth/velocity
factors v (analogous to u1 and u2) that satisfy, for any texture,

v(t) M [I](x, y) =R(x, y, t). (13)

1 Proof. From optical flow, k ∗ Pt = k ∗ (−u1Px − u2Py − u3(xPx + yPy)). Because
k∗xPx = x(k∗Px)−(xk∗Px) = x(k∗Px)−(k+xkx)∗P , then k∗Pt = −u1Ix−u2Iy−
u3(xIx+yIy)+u3(2k+xkx+yky)∗P . Likewise, kt∗P = kσσ̇∗P ∝ (2k+rkr)∗P . ut
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We prove in the following theorem that there exists a unique family of such
triples, comprised of Gaussian aperture filters and Laplacian image measure-
ments. This leads directly to a simple sensor and algorithm that we prototype
and evaluate in Section 4.
Theorem. Let κ : R2 → [0, 1] be radially symmetric, with κ(r) and rκ(r)
Lebesgue integrable. For v : R → R and translation-invariant linear spatial op-
erator M with finite support:

v(t;Z, Ż) M

κ
(√

x2+y2

σ(Z)

)
σ2(Z)

∗ P (x, y, t)

 = R(x, y, t;P, κ, Z, Ż),

∀P : S × R→ [0, 1], ∀Z ∈ R+, ∀Ż ∈ R, ∀(x, y, t) ∈ R3

(14)

if and only if, for aperture width and transmittance parameters Σ,α ∈ R+ and
measurement scaling parameter β ∈ {R− 0},

κ(r) = α e−
r2

2Σ2 , (15)

M = β ∇2, (16)

v(t;Z, Ż) =
1

β

Ż(t)

Z(t)

(
µf
Z(t)

− 1

)(
Σµs
µf

)2

. (17)

This theorem states that, when the filter κ(r) is Gaussian, the residual R is
proportional to the image Laplacian M [I] = Ixx+Iyy and is therefore directly ob-
servable. Moreover, the Gaussian is the only radially-symmetric aperture filter—
out of a broad class of possibilities including pillboxes, binary codes, and smooth
functions—that permits observation by a depth-blind linear operator.

Combining the proposition and theorem leads to a per-pixel linear constraint,
analogous to those used in measuring optical flow or time to contact.
Corollary. For a camera with Gaussian point spread functions observing a front-
parallel planar scene, the following constraint holds at each image pixel:

0 =
[
Ix Iy (xIx + yIy) (Ixx + Iyy)

]
v + It,

v =[u1, u2, u3, v]T =

[
−Ẋµs

Z
,− Ẏ µs

Z
,− Ż

Z
,− Ż

Z

(
1− µf

Z

)(Σµs
µf

)2
]T

.
(18)

Holding this constraint over a generic image patch yields a system of linear
equations that can be solved for u and v. In the presence of axial motion (Ż 6= 0)
the new scalar factor v provides enough additional information to directly recover
complete depth and velocity:

Z =
(µ2
sΣ

2µf )u3
(µ2
sΣ

2)u3 − (µ2
f )v

, (19)

(Ẋ, Ẏ , Ż) =− (Zu1/µs, Zu2/µs, Zu3) . (20)
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This implies a simple patch-wise algorithm for measuring depth and velocity,
about which we make a few notes. When an image patch is degenerate, meaning
that the matrix having a row [Ix, Iy, xIx + yIy, Ixx + Iyy] for each of the patch’s
pixels is not full rank, partial scene information can often still be obtained. For
example, a patch that contains a single-orientation texture and is subject to
the classical aperture problem gives rise to ambiguities in the lateral velocity
(Ẋ, Ẏ ), but depth Z and axial velocity Ż can still be determined. Separately, in
the case of zero axial motion (Ż = 0) it follows that u3 = v = 0, and the patch
can only provide optical flow. Finally, note that unlike many depth from defocus
methods, focal flow produces no side-of-focal-plane ambiguity.

The following proof draws heavily on the theory of distributions, for which
we suggest [30] as a reference. Additional intuition may be gained from two
alternate derivations of equation (18) that are provided in an associated tech-
nical report [31]. These alternate derivations are simpler because they begin by
assuming a Gaussian filter instead of proving its uniqueness.

Proof. Because M is a translation-invariant linear operator with finite support,
M [I] can be written as a convolution

M [I] =m ∗ I, (21)

with a compactly-supported distribution m. This compactness, along with the
compactness of P (which we relax later but need for uniqueness), guarantees
that the convolution theorem applies to m∗κ∗P . Then, with 2D spatial Fourier
transforms denoted by F [f(r)] = f̂(r̂), equation (14) can be written as

m̂(r̂)κ̂(σr̂)P̂ =− r̂

w
κ̂′(σr̂)P̂ , (22)

w(t) =
Z − µf
Ż

v(t), (23)

which we require to hold for all textures by eliminating P̂ terms. By assuming
compactness of m and integrability of κ and rκ, m̂ is smooth and κ̂ has a
continuous first derivative, so the resulting differential equation in κ̂ has solution

κ̂(σr̂) ∝e−w(t)
∫ r̂
0
m̂(ŝ)
ŝ dŝ, (24)

which restricts the class of possible m̂ and w to the form2

m̂ ∝r̂2n, w ∝ σ2n, n ∈ R. (25)

2 Proof. Because w is a function of time (and not spatial frequency), m̂ a function of
spatial frequency (and not time), and κ̂ a function of the time-frequency product
σr̂, this equation takes the form h0(xy) = ef(x)g(y) or h(xy) = lnh0 = f(x)g(y).
Considering x = 1 and y = 1 in turn, we see that g ∝ h ∝ f , so that f(x)f(y) ∝
f(xy). Differentiating by x and considering the case x = 1 results in the differential
equation f(y) ∝ yf ′(y), with general solution f(y) ∝ yn, equivalently y2n, n ∈ C.

Realness of v implies n ∈ R. Differentiating
∫ r̂
0

m̂(s′)
s′ ds′ ∝ r̂2n yields m̂ ∝ r̂2n. ut
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These are Riesz kernels, with inverse Fourier transform

m(r;n) ∝


undefined, n ≤ −1

(δ′′(x)δ(y) + δ(x)δ′′(y))∗n, n ∈ {0, 1, 2, ...}
r−2(n−b|n|c) ∗ (δ′′(x)δ(y) + δ(x)δ′′(y))∗b|n|c, n ∈ R, else,

(26)

where starred exponents indicate repeated convolution. When n is not a non-
negative integer, the corresponding m is undefined or has noncompact support.
When n = 0, the aperture filter κ is a pinhole, violating the finite transmittance
assumption. Thus, the complete set of image operators M that can satisfy con-
dition (14) are powers of the Laplacian: M ∈ {β(∇2)n | n ∈ Z+, β ∈ {R− 0}}.

For the proportionality v between measurement M [I] and residual R, note
from equation (25) that w takes a constant value under unit magnification σ.
Calling this constant Σ2 so that w = Σ2σ2n, equation (23) produces v:

v(t;Z, Ż) = ŻΣ2σ2n/(β(Z − µf )). (27)

Since v/u3 is monotonic in depth, it resolves complete scene information for any
n. For aperture filter κ we take equations (24, 25) under unit σ:

κ(r;n) =F−1
[
e−Σ

2r̂2n
]
, (28)

which corresponds to a Gaussian filter for n = 1. For all n ≥ 2, κ(r;n) cannot
describe a transmittance profile because it is negative for some r.3 Thus n = 1,
and M [k] is a rapidly decreasing function, so m ∗ k ∗ P is well-defined for any
bounded locally-integrable P , and the focal flow constraint holds regardless of
the compactness of the texture’s support. ut

3 Inherent Sensitivity

Due to the loss of image contrast as an object moves away from the focal plane,
we expect the focal flow depth signal to be strongest for scene patches that are
in focus or nearly in focus. This is similar to the expected performance of stereo
or depth from defocus, for which depth accuracy degrades at large distances. In
those cases, accuracy is enhanced by increasing the baseline or aperture size. In
focal flow, focal settings play the analogous role.

3 Proof. From the Fourier Slice Theorem [32,33], denoting by F1 the 1D Fourier trans-

form, we have F1

[∫
κ(x, y)dy

]
= κ̂(ωx, 0) = e−|ωx|

2n

. This function is not positive

definite for n ≥ 2 (which can be seen by taking C(n) =
∑∑

zizje
−|xi−xj |2n for

z = [1,−2, 1] and x = [−.12n, 0, .12n], and noting that both C(2) and dC
dn

are nega-
tive), so by Bochner’s theorem it cannot be the (1D) Fourier transform of a finite
positive Borel measure. The only property of such a measure that

∫
κ could lack is

non-negativity, so the existence of negative values of κ follows immediately. ut
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Following Schechner and Kiryati in [34], we can describe the inherent sensi-
tivity of all three depth cues. Recall that for a stereo system with baseline b and
an inference algorithm that estimates disparity ∆x, depth is measured as

Z =
bµs
∆x

, (29)

with first-order sensitivity to the disparity estimate∣∣∣∣ dZ

d(∆x)

∣∣∣∣ =

∣∣∣∣ bµs
−(∆x)2

∣∣∣∣ =
Z2

bµs
. (30)

Similarly, for a depth from defocus sensor with aperture radius A and an algo-
rithm that estimates blur radius Ã, the sensitivity of depth to error in Ã is

Z =
µfµsA

µf Ã+ µsA
, (31)∣∣∣∣dZdÃ

∣∣∣∣ =

∣∣∣∣∣ −µ2
fµsA

(µf Ã+ µsA)2

∣∣∣∣∣ =
Z2

Aµs
. (32)

These equations show a fundamental similarity between stereo and depth from
defocus, in which the baseline and aperture size are analogous.

For a toy model of focal flow, we consider images of a sinusoidal texture
blurred by a normalized Gaussian. We assume the texture has frequency ω0,
unit amplitude, and arbitrary phase and orientation. Then, the image captured
at time t has frequency ω and amplitude B, which are determined by depth:

ω(t) =Zω0/µs, (33)

B(t) =
x e−

x2

4Σ2σ2

4πΣ2σ2
cos(ω(t)x)dxdy = e

−Σ2ω2
0

(
Z−µf
µf

)2

. (34)

Depth can be measured from image amplitude, frequency, and their derivatives:

Z =
µf

1 +
(
µf
µsΣ

)2
Ḃ

2Bωω̇

. (35)

When image quantities (ω, ω̇, B, Ḃ) are measured within error bounds (εω, εω̇, εB , εḂ),
a simple propagation of uncertainty bounds the depth error εZ :

εZ ≤

√(
∂Z

∂ω

)2

ε2ω +

(
∂Z

∂ω̇

)2

ε2ω̇ +

(
∂Z

∂B

)2

εB +

(
∂Z

∂B1

)2

ε2
Ḃ

(36)

=
Z|Z − µf |

µf

√
ε2ω
ω2

+
ε2ω̇
ω̇2

+
ε2B
B2

+
ε2
Ḃ

Ḃ2
. (37)

This combination of error terms suggests that accuracy in measuring either
brightness or spatial frequency can be used to mitigate error in the other quan-
tity. This presents a novel trade-off between bit depth and spatial resolution
when selecting a photosensor.
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Depending on the error model, the radicand in expression (37) could intro-
duce additional scene dependencies, but in the simplest case, it is constant and
focal flow is immediately comparable to stereo and depth from defocus. Just as
the sensitivity of those measurements goes as depth squared, we see that focal
flow measurements are sensitive to object distance from both the camera and
the focal plane through the Z|Z−µf | term. The focal flow analogue to aperture
size or baseline in this scenario is the ratio of focal depth to sensor distance.

4 Prototype and Evaluation of Non-idealities

In theory, when an ideal thin lens camera with an infinitely-wide Gaussian aper-
ture filter observes a single moving, front-parallel, textured plane, there is a
unique solution v ∈ R4 to the system of per-pixel linear focal flow constraints
(equation (18)), and this uniquely resolves the scene depth Z(v) and velocity
(Ẋ, Ẏ , Ż)(v) through equations (19, 20). In practice, a physical instantiation of
a focal flow sensor will deviate from the idealized model, and there will only be
approximate solutions ṽ ∈ R4 that can produce errors in depth and velocity.

We expect two main deviations from the idealized model. First, thick lenses
have optical aberrations and a finite extent, making it impossible to create ideal
Gaussian blur kernels that scale exactly with depth. Second, image derivatives
must be approximated by finite differences between noisy photosensor values.
We assess the impacts of both of these effects using the prototype in Figure 2.
Based on 1”-diameter optics, it includes an f=100mm planar-convex lens, a
monochromatic camera (Grasshopper GS3-U3-23S6M-C, Point Grey Research),
and an adjustable-length lens tube. The aperture side of the sensor supports
various configurations, including an adjustable aperture diaphragm and the op-
tional inclusion of a Gaussian apodizing filter (NDYR20B, Thorlabs) adjacent
to the planar face of the lens. A complete list of parts can be found in [31].

Measurement algorithm. For all results, we produce depth and velocity mea-
surements using three frames from a temporal sequence, I(x, y, ti), i ∈ {1, 2, 3}.
To emulate a lower-noise sensor, each frame is created as the average of ten
shots from the camera, unless otherwise noted. We use temporal central dif-

Fig. 2. Prototype focal flow sensor. The configurable aperture has a variable di-
aphragm the optional inclusion of a Gaussian apodizing filter. An adjustable lens tube
enables varying pairs of focal and sensor distances (µs, µf ).
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ferences, It(x, y) ≈ 1/2 (I(x, y, t3)− I(x, y, t1)), and spatial difference kernels
Dx = (−1/2, 0, 1/2), Dxx = Dx ∗Dx, and likewise in y, convolved with the mid-
dle frame I(x, y, t2). To densely estimate the scene vectors v(x, y), we aggregate
the per-pixel linear constraints over a square window into the matrix equation
Av = b, and take the least-squares solution as the measurement for the central
pixel. Similar to optical flow, this can be implemented efficiently by comput-
ing, storing, and inverting the normal equations ATAv = ATb at all pixels in
parallel. A reference implementation is included in [31].

This measurement process requires knowing the image sensor’s principal
point (the origin of the coordinate system for x and y in equation (18)). We
set it to the central pixel during alignment. We also find that numerical stabil-
ity is improved by pre-normalizing the spatial coordinates x ← x/c, y ← y/c
for some constant c (we use c = 104). This pre-normalization and the use fi-
nite differences lead to depth and velocity values that, if computed naively with
equations (19, 20), are scaled by an unknown constant. We accommodate these
and other non-idealities through the following off-line calibration procedure.

Calibration. Mapping a scene vector v to depth and velocity requires only two
calibrated values: the filter width parameter Σ, and sensor distance µs (which,
along with the lens’ focal length f=100mm, determines the object focal distance
µf ). Since blur kernels often deviate substantially from Gaussians, we optimize
the calibration parameters directly with respect to depth accuracy. We mount
a textured plane on a high-precision translation stage in front of the sensor,
carefully align it to be normal to the optical axis, and use images of many
translations to optimize the parameters µs and Σ. Details are included in [31].
To ensure that the system generalizes over texture patterns and focal depths, all
reported results use textures and sensor distances µs that differ from those used
in calibration.

Calibration must be repeated when the aperture is reconfigured, such as when
inserting an apodizing filter or adjusting the diaphragm. When the effective blur
kernels change, so does the optimal effective width Σ. But for a fixed aperture,
we find that the sensor distance µs can be adjusted without re-calibrating Σ.

Results. Figures 3 and 4 show performance for different apertures and noise lev-
els. Accuracy is determined using a textured front-parallel plane whose ground
truth position and velocity are precisely controlled by a translation stage. In
each case, the measurement algorithm is applied to a 201× 201 window around
the image center. The top and middle rows of Figure 3 compare the measured
depth Z and speed ‖(Ẋ, Ẏ , Ż)‖ to ground truth, indicated by solid black lines.
Speed is measured in units of millimeter per video frame (mm/frame). Differ-
ent colors in these plots represent experiments with different focus distances µf ,
corresponding to different lengths of the adjustable lens tube. We show measure-
ments taken both with an apodizing filter (and open diaphragm) and without it
(with diaphragm closed to about �4.5mm). In both cases, the inset point spread
functions reveal a deviation from the Gaussian ideal, but the approximate solu-
tions to the linear constraint equations still provide useful depth information over
ranges that are roughly centered at, and proportional to, the focus distances.
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Fig. 3. Accuracy and working range. Top and middle rows: Estimated depth and
speed versus true depth for two aperture settings: apodizing filter (top) and open
diaphragm (middle). Solid black lines are true depth and speed. Insets are sample
image and PSF. Colors are separate trials with different focal distances µf , marked by
dashed vertical lines. Depth interval for which depth error is less than 1% of µf defines
the working range. Bottom left : Sample PSFs, and working range versus focal distance,
for aperture settings: (I) diaphragm �4.5mm, no filter; (II) diaphragm open, with filter;
(III) diaphragm �8.5mm, no filter; (IV) diaphragm �25.4mm, no filter. Bottom right :
Working range for distinct noise levels, controlled by number of averaged shots.
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Fig. 4. Velocity. Measured depth, speed, and 3D direction (Ẋ, Ẏ , Ż)/‖(Ẋ, Ẏ , Ż)‖ ver-
sus true depth, with markers colored by true depth. Directions shown by orthographic
projection to XY -plane, where the view direction is the origin. Ground truth is black
lines for depth and speed, and white squares for direction. (Two ground truth directions
result from remounting a translation stage to gain sufficient travel.)

The bottom of Figure 3 shows the effects that aperture configuration and
noise level have on the working range, defined as the range of depths for which
the absolute difference between the measured depth and the true depth is less
than 1% of the focus distance µf . The prototype achieves a working range of
more than 15cm. Figure 4 shows both the measured speed and the measured
3D direction of a moving texture. Comprehensive results for different textures,
aperture configurations, and noise levels can be found in [31].

Figure 5 shows full-field depths maps measured by the system. Each is ob-
tained by applying the reconstruction algorithm in parallel to overlapping win-
dows. We used 71 × 71 windows for the top row and 241 × 241 windows for
the bottom. We do not use multiple window sizes or any form of spatial regu-
larization; we simply apply the reconstruction algorithm to every window inde-
pendently. Even using this simple approach, the depths map are consistent with
the scene’s true shape, even when the shape is not front-parallel. The Matlab
code used to generate these depth maps can be found in [31]. It executes in 6.5
seconds on a 2.93GHz processor with Intel Xeon X5570 CPU.

5 Discussion

By combining blur and differential motion in a way that mitigates their indi-
vidual weaknesses, focal flow enables a passive, monocular sensor that provides
depth and 3D velocity from a simple, small-patch measurement algorithm. While
the focal flow theory is developed using Gaussian blur kernels and front-parallel
scene patches, we find in practice that it can provide useful scene information for
a much broader class of aperture configurations, and some slanted scene planes.

The prototype described in this paper currently has some limitations. Its
simple measurement algorithm uses naive derivative filters and performs inde-
pendent measurement in every local patch. As such, it is overly sensitive to noise
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Fig. 5. Depth maps for two different scenes. From left to right: one frame from an
input three-frame image sequence; per-pixel depth measured by independent focal flow
reconstruction in overlapping square windows; and true scene shape for comparison.

and requires high-contrast texture to be everywhere in the scene. Performance
can likely be improved by including noise suppression and dynamical filtering
that combines the available depth and velocity values. At the expense of addi-
tional computation, performance could also be improved by adapting techniques
from optical flow and stereo, such as outlier-rejection, multi-scale reasoning, and
spatial regularization that can interpolate depth in textureless regions.

Another way to extract depth with an unactuated, monocular sensor is single-
shot depth from defocus with a binary coded aperture (e.g., [35,18,19]), where
one explicitly deconvolves each image patch with a discrete set of per-depth
blur kernels and selects the most “natural” result. Compared to focal flow, this
provides a larger working range, but lower depth precision and a much greater
computational burden. For example, a simulated comparison to [18] showed its
working range to be at least four times larger, but its precision to be more
than seven times lower and its computation time to be at least a hundred times
greater [31]. The relative efficiency of focal flow suggests its suitability for small,
low-power platforms, particularly those with well-defined working ranges and
regular ambient motion, either from the platform or the scene.
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