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Color Constancy with Spatio-Spectral Statistics
Ayan Chakrabarti, Keigo Hirakawa, and Todd Zickler

Abstract—We introduce an efficient maximum likelihood approach for one part of the color constancy problem: removing from an
image the color cast caused by the spectral distribution of the dominating scene illuminant. We do this by developing a statistical model
for the spatial distribution of colors in white balanced images (i.e. those that have no color cast), and then using this model to infer
illumination parameters as those being most likely under our model. The key observation is that by applying spatial band-pass filters
to color images one unveils color distributions that are unimodal, symmetric, and well-represented by a simple parametric form. Once
these distributions are fit to training data, they enable efficient maximum likelihood estimation of the dominant illuminant in a new image,
and they can be combined with statistical prior information about the illuminant in a very natural manner. Experimental evaluation on
standard datasets suggests that the approach performs well.

Index Terms—Color Constancy, Statistical Modeling, Spatial Correlations, Maximum Likelihood, Illumination Statistics
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1 INTRODUCTION

In addition to its intrinsic reflectance properties, the
observed color of a material depends on the spectral
and spatial distributions of its surrounding illumination.
Thus, in order to use color as a reliable cue for recogni-
tion, we must somehow compensate for these extrinsic
factors and infer a color descriptor that is stable despite
changes in lighting. The ability to make this inference—
termed color constancy—is exhibited by the human visual
system to a certain degree, and there are clear benefits
to building it into machines.

One important part of computational color constancy,
and the part we consider in this paper, is compensating
for the color cast that affects a scene as a whole. For
this, one ignores spatial variations in lighting spectra and
makes the assumption that the spectrum of the illumi-
nant is approximately uniform throughout the scene. The
problem is then one of inferring the map M : R3 → R3

from the space of observed tristimulus vectors (RGB,
human cone, etc.) to the space of canonical colors—those
that would have been obtained for the same scene by a
standard observer under a standard illuminant spectral
power distribution.

Like most vision tasks, this version of the color con-
stancy problem is ill-posed, so solving it requires a prior
model for the set of canonical colors that exist in a scene.
Once equipped with such a model, and optionally a prior
model for illuminants as well, we can solve for the color
cast (the map M ) that best explains the image under this
model.

Traditional approaches to this problem use models
based on statistics of per-pixel colors, and the principal
challenge they face is how to define useful statistics in a
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tractable manner. The set of per-pixel colors varies signif-
icantly from scene to scene, so methods based on simple
first-order statistics like the mean color (grey world [1]) or
the color of the brightest pixel (white patch [2]) can fail
quite dramatically. Improving reliability requires more
sophisticated models for the set of per-pixel colors in
a scene, such as the shape of their convex hull in
color space [3] or a non-parametric representation of
the empirical probability distribution [4], [5], [6]. These
methods improve performance, but at a significant com-
putational cost.

This paper introduces a model that goes beyond
statistics of per-pixel colors and leverages joint spatial-
color structure. Motivated by the success of filter-based
methods [7], [8], we begin by decomposing an input
color image into distinct spatial sub-bands, and then
we model the color statistics separately in each sub-
band. We show that unlike per-pixel colors, the empirical
probability distributions of the colors in each sub-band
can be well represented using simple parametric (radial
exponential) forms, and that these allow inferring the
color cast of an image quite effectively. The resulting
method outperforms existing approaches on standard
databases, operates very efficiently, and allows incor-
porating a prior model for illuminants in a statistical
framework.

1.1 Problem Formulation

Assuming a Lambertian model, we denote the effective
spectral reflectance of a surface patch observed at pixel
n ∈ Z2 by κ(λ,n), where λ ∈ R denotes wavelength.
Here, κ accounts for both the material reflectance and
surface orientation with respect to the illuminant. We as-
sume a single dominant scene illuminant and represent
its spectral distribution by `(λ). As depicted in Fig. 1,
the spectral distribution of the radiance that is emitted
toward the observer is then the product of ` and κ.
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Fig. 1. Camera measurements under different illuminants. The effective surface reflectance (κ) gets shaped by the
spectrum (`) of the scene illuminant. Different illuminants can lead to significantly different radiance spectra (κ × `)
being incident on the camera, in turn leading to different trichromatic measurements by the camera’s sensors (π).

We assume that we are given three spectral measure-
ments at each pixel n:1

y(n) =

y{1}(n)
y{2}(n)
y{3}(n)

 :=
∫
π(λ)κ(λ,n)`(λ) dλ, (1)

where π(λ) = [π{1}(λ), π{2}(λ), π{3}(λ)]T are the spectral
transmittance distributions of the sensor’s color filters.
From image y(n) our task is to estimate an illuminant-
invariant representation, or “canonical color” image,
x(n) given by

x(n) :=
∫
π(λ)`0(λ)κ(λ,n)dλ. (2)

We refer to `0 as our “canonical illuminant”, and for the
specific choice `0(λ) = 1, each canonical color x(n) can
be interpreted as the trichromatic projection (via π) of the
effective reflectance κ(λ,n) at the corresponding surface
point.

The colors y and x in (1) and (2) are trichromatic
reductions of the full spectral distribution that cannot
be exactly reversed, even when illuminants ` and `0 are
known. However, prior work [9], [10], [11] suggests that
a linear mapping of the form

x(n) = M−1y(n), M ∈ R3×3, (3)

can achieve accurate chromatic adaptation in many
cases, and that it can often be approximated further as
a diagonal transformation (i.e. , Mij = 0, if i 6= j). In this
paper, we apply such diagonal mappings directly in the
color space defined by π, even though applying them in
an optimized (often called “sharpened”) color space can
improve performance [9], [10], [11]. For this reason, our
results may provide a conservative estimate of what can
be achieved by our algorithm.

1. For typical digital cameras, this assumes idealized demosaicking.

With some abuse of notation, we let M represent a
diagonal matrix for the rest of this paper; and with
some abuse of terminology, we refer to its recovery as
estimating the illuminant.

1.2 Related Work

Having settled on a linear diagonal form for the map-
ping from input color y to canonical color x, the color
constancy problem reduces to estimating the three diag-
onal entries of M . Since both the illuminant and scene
reflectances are unknown, this is an under-determined
problem, and prior work in this area typically address
this by introducing a model or statistical prior for surface
reflectance κ or canonical color x. White Patch [2] and
Grey World [1] are two well-known methods with intu-
itive interpretations. Based on the observation that color-
neutral surfaces (i.e. with constant spectral reflectance)
are the most efficient reflectors, the White Patch algo-
rithm posits that pixels observed to have the greatest
intensity correspond to a color-neutral surface patch.
Similarly, based on the model that the mean surface
reflectance in a scene is color-neutral, the Grey World
method assumes that the sample mean of {x(n)}n is
achromatic or grey2. The diagonal elements of M are
then estimated by mapping maxn(y(n)) or avgn(y(n))
to white.

An alternative to these approaches is to represent the
set of canonical colors expected in a natural scene by
their convex hull, or gamut [3]. In a new input image
y(n), the corresponding corrected colors {M−1y(n)}n
are expected to lie within this gamut, and this induces
a set of constraints on the unknown illuminant M .
In many cases, multiple choices of M may satisfy
these constraints for a given image, and different ap-

2. In fact, Buchsbaum [1] did not require the average color to be
grey—only that it be some known system parameter.
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proaches [3], [12] have been proposed to arrive at a
unique solution from this feasible set.

Another alternative is to define a probability distribu-
tion over the space of observed or canonical colors in
a scene. The Color by Correlation [13] algorithm begins
by discretizing the chromaticity space into a number
of bins, and then assigns a probabilities to each bin
being observed under every candidate illuminant. The
scene illuminant M is then chosen to maximize the
likelihood of all observed colors in the input image y.
Statistical approaches also permit the inclusion of a prior
distribution over illuminant spectra. Statistical models
for illuminants are combined with those for canonical
pixel colors, based on Gaussian [4] or, more effectively,
non-parametric [5], [6] distributions, to yield Bayesian
estimates of the illuminant M .

Related to these are a number of leaning-based ap-
proaches that effectively use a training database, of color
images with ground truth illuminant data, to learn a
function f that maps an observed image y to an estimate
of the corresponding illuminant M . For example, Shi
et al. [14] learn this function f using thin-plate spline
interpolation from colors in a training database. Other
approaches include learning f in terms of linear fil-
ters [15], neural networks [16] and using support-vector
regression [17].

All of the above methods can be considered pixel-
based, because they model the set of individual pixel
colors without considering each pixel’s spatial context.
One can arbitrarily re-order the pixels of any input im-
age, for example, without affecting the resulting estimate
of illuminant M . Because they ignore spatial structure,
these methods can be negatively influenced by scene
content that skews the color histogram, such as the
presence of large colorful objects.

A variety of work suggests that improvements might
be gained by employing spatial image features, such as
segmentations or linear filter responses, that incorporate
spatial information in a tractable manner. For example,
Gershon et al. [18] assume that the average of mean
colors of segmented regions of an image, rather than
of individual pixels, is color neutral. Alternatively, van
de Weijer et al. [7] and Gijsenij et al. [8] respectively
apply the Grey World and gamut constraint procedures
described above to the outputs of linear filters instead
of the individual pixels they were originally designed
for. (The Grey Edge method [7] posits that image gradi-
ents are on average color neutral, while the generalized
gamut mapping algorithm [8] proposes strategies for
combining cues from the expected gamuts of various
linear filter coefficients.) Finally, Singh et al. [19] reason
about the illuminant using a linear spatio-spectral basis
for small spatial patches of color images.

The goal of this paper is to leverage joint spatial and
spectral structure in a more efficient and effective man-
ner. We achieve this by representing the prior probability
distribution over canonical color images in terms of the
color coefficients in distinct spatial sub-bands. We show

empirically that, unlike per-pixel colors, the distributions
of these sub-band coefficients can be well-represented
using convenient parametric forms, and that these para-
metric forms can be used in a maximum-likelihood
framework to estimate the illuminant M quite efficiently
and accurately. The paper builds on an earlier version of
this work [20], which used Gaussian distributions and
tested them on non-linearly transformed (i.e. gamma-
corrected) color images. Here, we work directly on linear
data as defined in (1) and (2) and show that distributions
with heavier tails are more appropriate.

2 SPATIO-SPECTRAL MODELING

As stated above, we move beyond statistics of indi-
vidual pixels colors, drawing inspiration from previous
studies [7], [8], [19], and seek to exploit information
about a pixel’s spatial context. We take an approach
similar to the grey-edge [7] and generalized-gamut [8]
methods, by looking at the properties of filter coefficients
instead of individual pixels. These methods represent
important first steps in looking beyond individual pixels
and demonstrate that filter coefficients provide more
robust cues for color constancy. However, they are based
on the direct application of pixel-based color constancy
techniques, grey world [1] and gamut mapping [3] re-
spectively, to filter coefficients, so there is reason to be-
lieve that a new estimation procedure, that is specifically
tailored to the statistical behavior of these coefficients,
can improve performance.

We begin with the observation that statistics of fil-
ter coefficients show far more structure than those of
individual pixels. Figure 2 compares the empirical his-
tograms of red values of individual pixels to those of
coefficients for a particular band-pass filter, in images
under a canonical illuminant. We note that the histogram
for the filter coefficients is uni-modal and symmetric,
while individual pixels show less discernible statistical
structure. It is because of this lack of structure that pixel-
based color constancy methods have been constrained
to either use properties of simple ensemble statistics
like the mean (eg. grey world [1]), employ expensive
non-parametric distributions (eg. Rosenberg [5], [6]) or
model only the support, or convex hull, of pixel colors
(eg. gamut mapping [3]).

In contrast, Fig. 2 suggests that filter coefficients have
distributions that can be described accurately by para-
metric models. In this section, we propose such a model
and describe a method to learn its parameters from
training data. We then present an algorithm that uses
this model to estimate the unknown illuminant from an
observed image.

2.1 Image Model
We begin by defining a statistical model for an image
x(n) observed under canonical illumination. Since pix-
els in a spatial neighborhood are strongly correlated,
we first apply a spatially-decorrelating transform by
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Fig. 2. Distributions of individual pixels vs. filter coeffi-
cients. Shown are empirical log-histograms (over a stan-
dard database [6] of 12-bit color images) of the red values
of individual pixels (Left) and coefficients (Right) of a sub-
band filter (Inset), for images under canonical illumination.
The coefficient histogram shows more structure and can
be modeled by parametric distributions.

Fig. 3. Sub-band Decomposition. We use horizontal
and vertical second-derivative Gaussian filters at multiple
scales to spatially decorrelate the image, and model
corresponding coefficients independently.

filtering the image with a series of spatial sub-band
filters {fk(n)}k. While these filters can be chosen to
correspond to any standard image decompositions, such
as wavelet transforms, steerable pyramids, etc., Gaus-
sian derivative filters have proved successful in edge-
based color constancy methods [7], [8]. Therefore, we
use a decomposition based on horizontal and vertical
second-derivative Gaussian filters at multiple scales as
illustrated in Fig. 3. Each filter is applied separately to
all channels of the image and we define the trichromatic
color coefficient vector xk(n) as

xk(n) =
[
(x{1} ∗ fk)(n), (x{2} ∗ fk)(n), (x{3} ∗ fk)(n)

]T
,

(4)
where ∗ denotes convolution. We assume that following
the decomposition by the filter bank {fk}, each sub-band
canonical color image xk(n) can be modeled as being
independent from the rest.

We represent the prior probability of each sub-band
canonical color image as the product of independent,
identical distributions per trichromatic coefficient vector,∏

n p (xk(n)), where the distribution p (xk) encodes the
joint statistics of the three per-channel coefficients in xk.
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Fig. 4. Equiprobable contours of the distribution of fil-
ter coefficient vectors xk(n), corresponding to the filter
shown in Fig. 2. Contours are shown along the two
major eigen-vectors of the covariance matrix Σk, for a
multi-variate Laplace distribution (Left), a radial exponen-
tial distribution (Center), and the empirical distribution
computed using kernel density estimation (Right). The
empirical distribution has elliptical contours, making the
radial exponential distribution a more appropriate choice
for modeling these coefficients.

Specifically, we use the radial exponential distribution [21],

p(xk) =
1

π
√

det(Σk)
exp

(
−2
√
xT

k Σ−1
k xk

)
, (5)

where Σk is a 3× 3 positive-definite matrix correspond-
ing to the covariance of xk.

Note that the radial exponential distribution used in
(5) is more kurtotic, or heavy-tailed, than a multi-variate
Gaussian, and can be thought of as a generalization
of the Laplace distribution to the multi-variate case. It
differs, however, from the standard multi-variate Laplace
distribution [22] in that the multi-variate Laplace has
equiprobable contours that are L1-spherical or diamond
shaped (see Fig. 4 (left)) while those of the radial expo-
nential distribution are ellipsoidal (see Fig. 4 (center)).
This implies that the components of xk along the eigen-
vectors of Σk are un-correlated but not independent un-
der (5). Figure 4 (right) shows the equiprobable contours
of the actual empirical distribution of xk computed using
kernel-density estimation and we see that these contours
are indeed ellipsoidal.

2.2 Learning Model Parameters

Having defined a parametric statistical model for canoni-
cal color images, p(x) =

∏
k

∏
n p (xk(n)), we are in need

of two algorithms. First, we require the ability to fit the
model parameters Σk given a training set of T canonical
color images {xt}Tt=1 (indexed by t), and second, we
require the ability to use this learned prior model to
reason about the illuminant M for a given input color
image y(n). We deal with training in this section, and
in the next we address illuminant estimation.

We treat each sub-band separately during training, so
the problem amounts to independently inferring each Σk

given the corresponding sub-band of the training set,
{xk,t}Tt=1. Although, Σk corresponds to the covariance
matrix of xk, the maximum likelihood (ML) estimate of
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Σk is not the empirical covariance of {xk,t}. The log-
likelihood of the training set as a function of Σk is

Jk(Σ) =
∑

t

log p (xk,t|Σ)

= −T
2

log det(Σ)−
∑

t

2
√
xT

k,tΣ−1xk,t. (6)

Unfortunately, the ML estimate of Σk, which is given
by Σk = arg max Jk(Σ), does not have a closed-form
solution. Therefore, we propose an iterative estimation
procedure.

We initialize Σk as the identity matrix. Based on the
current estimate Σ∗k of Σk at any iteration, we define an
approximation to Jk(·) as

J∗k (Σ|Σ∗k) = −T
2

log det(Σ)−
∑

t

2
xT

k,tΣ
−1xk,t√

xT
k,tΣ

∗
k
−1xk,t

. (7)

We then update Σk in the following iteration as

Σk = arg max
Σ

J∗k (Σ|Σ∗k) =
4
T

∑
t

xk,tx
T
k,t√

xT
k,tΣ

∗
k
−1xk,t

. (8)

The true ML estimate is a fixed point of these iterations,
and we find that the procedure converges quickly in
practice (usually in less than five iterations).

2.3 Illuminant Estimation

Once we have learned the parameters of the prior model,
we are ready to infer the illuminant M for an input color
image y(n). As per our model in (3), we assume that
y(n) = Mx(n), where M is a diagonal 3×3 matrix with
positive entries. Since convolution is a linear operation,
it follows that yk(n) = Mxk(n), where yk(n) are the
color sub-band coefficients of y(n) for filter fk as in (4).

We begin by noting that under our prior model for xk,
the likelihood of yk given M is given by

p(yk|M) =
exp

(
−2
√
yT

k (MΣkM)−1yk

)
π
√

det(MΣkM)

∝ 1
det(M)

exp
(
−2
√
yT

k (MΣkM)−1yk

)
. (9)

Therefore, conditioned on M the coefficients yk(n) also
have a radial exponential distribution, with the covari-
ance matrix MΣkM . Figure 5 compares the covariance
matrices Σk and MΣkM for a typical illuminant M .
This difference between the kth sub-band coefficient dis-
tributions for the input image yk and the canonical color
image xk, as embodied by these covariance matrices, is
the fundamental cue that we will exploit for illuminant
estimation.

For notational convenience, we define
m = [m1,m2,m3] and w = [w1, w2, w3] to be the
diagonal elements of M and M−1 respectively, where

Fig. 5. Covariance matrices Σk and MΣkM , for co-
efficients observed under a canonical illumination and a
typical illuminantM . (Left) Ellipsoids corresponding to the
covariance matrices, and (Right) their projections onto the
R-B and G-B planes. The illuminant causes a skew in the
shape of the covariance matrix, which serves as a cue for
our estimation method.

mi = w−1
i . Then, the ML estimate of M given all

observed coefficients {yk(n)}k,n is given by

M̂ML = arg max
M∈diag(R3)

∑
k,n

log p (yk(n)|M)

= arg min
∑
k,n

log det(M) + 2
√
yT

k (n)(MΣkM)−1yk(n)

= arg minN logm1m2m3

+
∑
k,n

2
√
wT

[
(yk(n)yT

k (n)) ◦Σ−1
k

]
w, (10)

where N =
∑

k,n 1 is the total number of coefficients,
and A◦B denotes the Hadamard or entry-wise product
of matrices A and B.

We propose an iterative algorithm to solve (10) using
a similar approach as the training method. Based on
the estimate M∗ of the illuminant at every iteration, we
approximate the cost function in (10) as

L(M |M∗) = N logm1m2m3

+
∑
k,n

2
wT

[
(yk(n)yT

k (n)) ◦Σ−1
k

]
w√

yT
k (n)(M∗ΣkM∗)−1yT

k (n)

= N

[
logm1m2m3 +

1
2
wTA∗w

]
, (11)

where A∗ is a 3× 3 symmetric matrix given by

A∗ =
4
N

∑
k

∑
n

yk(n)yT
k (n)√

yT
k (n)(M∗ΣkM∗)−1yT

k (n)

◦Σ−1
k .

(12)
In the next iteration, the illuminant estimate M is set
to arg minL(M |M∗). There is a closed-form solution to
this expression for each element of mi of m when the
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others elements mj , j 6= i are fixed. This is given by

∂

∂mi
L(M |M∗) = 0⇒ m2

i −

∑
j 6=i

A∗ji

mj

mi −A∗ii = 0

⇒ mi =
1
2

∑
j 6=i

A∗ji

mj
+

√√√√√∑
j 6=i

A∗ji

mj

2

+ 4A∗ii

 . (13)

We therefore apply (13) on each channel i keeping the
others fixed, and iterate until convergence.

Once we have estimated M̂ML through this procedure,
the canonical image x(n) can be computed simply as
x(n) = M̂−1

MLy(n).

3 ILLUMINANT PRIOR
Implicit in the maximal likelihood estimation of (10) is
the notion that all illuminants are equally likely. Drawing
from the success of existing color constancy algorithms
[4], [6] that leverage the a-priori knowledge of the il-
luminant distribution, however, we develop a strategy
to incorporate an illuminant prior. The experimental
validation in Section 4 will show that such a regularized
estimate can improve robustness.

Consider an illuminant prior distribution p(M) of the
form

p(M) =
(

2
π

)3/2 det(Q)−1/2

m2
1m

2
2m

2
3

exp
(
−1

2
wTQ−1w

)
, (14)

where Q is a 3×3 positive-definite matrix, and m,w > 0
are as defined before. It is useful to note that this
multivariate Gaussian distribution on w (restricted to
positive values) is a conjuate prior to the likelihood
expression in (10). We note that (14) may be used to
describe the statistics of scene illuminants in general,
or those restricted to a category of illuminants (such as
indoor v.s. outdoor).

Ideally, the covariance parameter Q would be com-
puted as a sample covariance of a training set {wt}
of illuminant coefficients. However, only the relative
spectral radiance of illuminants is usually available,
meaning the absolute luminance of the illuminants in
the training set is unknown. Therefore, we compute the
sample covariance Q′ over the set of illuminant vectors
normalized such that ‖mt‖ = 1 during training. During
estimation, we first compute the ML estimate M̂ML of
(10) (that is, without the illuminant prior), and then
reweight Q′ covariance parameter as

Q = ‖mML‖2Q′. (15)

This reweighting has the effect of normalizing the train-
ing set ‖mt‖ to the initial estimate ‖mML‖.

Let yk be the kth sub-band coefficients of input image
as before. The final illuminant estimate incorporating
p(M) is obtained by solving

M̂ = arg max

∑
k,n

log p(yk(n)|M)

+ α log p(M). (16)

Here, α is a scalar parameter that weights the relative
contribution of the prior to the image evidence, and is
learned using cross-validation to minimize estimation
error on a training set. While for the special case of
α = 1, (16) corresponds to maximum a-posteriori (MAP)
estimation, we find that a larger weight on the prior
yields better estimates in practice.

Solving (16) in a manner similar to (13), we define an
approximated cost as

Lp(M |M∗) = (N + 2α)
[
logm1m2m3 +

1
2
wTA∗pw

]
,

(17)
where A∗p is a 3× 3 matrix given by

A∗p =
NA∗ + αQ

N + 2α
. (18)

Applying (13) iteratively to A∗p (instead of A∗) solves
M = arg minLp(M |M∗). If M∗ is set to MML, we find
that further iterations to update Lp or Q are unnecessary.

4 EXPERIMENTAL EVALUATION

We primarily evaluate the proposed method on the
“Color Checker” database collected by the authors of
[6], which includes 568 color images of which 246 were
labeled as captured indoors, and 322 as captured out-
doors. Each image has a color checker chart at manually
marked co-ordinates which serves as ground truth, and
is masked out during evaluation. We use the version
of the database made available by Shi and Funt [23].
It consists of 12-bit linear images in the sensor color
space generated directly from the RAW captured data—
without using the camera’s auto-white balance, gamma-
correction or any demosaicking (the sensor data is sub-
sampled to provide a trichromatic vector at each pixel).
While we focus most of our discussion on the per-
formance of various algorithms on this database, we
also include results for two other common databases in
Sec. 4.3.

A recent survey paper [24] provides a comprehensive
evaluation of a large number of color constancy methods
on this database (i.e. the re-processed version from [23]),
allowing us to compare the proposed algorithm to these
methods. Performance is measured in terms of the angu-
lar deviation between the estimated and true illuminant,
where the later is computed from the brightest grey
patch in the color chart. We use the same error metric
and ground truth to evaluate our method and compare
performance to the state of the art: grey world [1],
grey edge [7], gamut mapping [3], generalized gamut
mapping [8] and Rosenberg [5], [6].

4.1 Implementation Details

We implement the proposed method with second-
derivative Gaussian filters at three different scales (σ =
1, 2 and 4). We report performance both with and with-
out the illumination prior. For the case with the prior,
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TABLE 1
Angular error quantiles for various methods on “Color Checker” database [6]

All Images Indoor Outdoor
(568) (246) (322)

Mean Median Worst-25% Mean Median Worst-25% Mean Median Worst-25%
Grey World [1] 4.6◦ 4.1◦ 8.7◦ 5.8◦ 5.5◦ 9.9◦ 3.7◦ 3.1◦ 7.1◦

Grey Edge (1st Order) [7] 4.1◦ 3.5◦ 8.0◦ 4.8◦ 4.1◦ 8.8◦ 3.5◦ 2.9◦ 7.1◦

Grey Edge (2nd Order) [7] 4.0◦ 3.4◦ 7.8◦ 4.7◦ 4.0◦ 8.5◦ 3.5◦ 2.8◦ 7.1◦

Gamut Mapping (σ = 5) [3] 4.1◦ 2.5◦ 10.3◦ 5.5◦ 4.3◦ 12.3◦ 3.1◦ 1.8◦ 7.9◦

Generalized Gamut (σ = 5,1-jet) [8] 4.1◦ 2.5◦ 10.3◦ 5.5◦ 4.4◦ 12.4◦ 3.1◦ 1.8◦ 7.9◦

Rosenberg [6] 4.8◦ 3.5◦ 10.5◦ 6.5◦ 5.9◦ 12.0◦ 3.5◦ 2.4◦ 7.9◦

Proposed (ML Estimate) 3.7◦ 3.0◦ 7.6◦ 4.2◦ 3.6◦ 8.1◦ 3.3◦ 2.5◦ 7.1◦

Proposed (with general Prior) 3.6◦ 3.0◦ 7.4◦ 4.2◦ 3.6◦ 7.9◦ 3.2◦ 2.4◦ 6.9◦

Proposed (with category-wise Prior) 3.1◦ 2.3◦ 6.5◦ 4.1◦ 3.7◦ 7.8◦ 2.3◦ 1.9◦ 4.6◦

we evaluate a general prior over all illuminants, as well
as separate priors for the indoor and outdoor images.
To train the parameters of our model {Σk},Q′ and α,
we use three-fold cross validation where the database
is split into three equal folds, and when testing on
each fold, we use the remaining images for training.
MATLAB source code for this implementation, and the
estimated illuminants for all images in this database
are available for download at http://vision.seas.harvard.
edu/colorconstancy/.

Since the authors of [24] have made the estimated illu-
minants and errors for all evaluated methods available,
we report performance for most other methods directly
from their data. However, we incorporate an important
enhancement to the evaluation of grey world and grey
edge that improves their performance. While grey world
is often interpreted as assuming the mean color of an
image to be along [1, 1, 1] (as is the case in [24]), we
posit that the mean is along a 3 × 1 unit vector ĝ. The
illuminant estimate is then given by:

m̂ = [diag(ĝ)]−1avg(y(n)), (19)

where avg(y(n)) is the trichromatic average of the ob-
served image. This approach is sometimes referred to
as database grey world [25], and we apply the same
interpretation to grey edge, and learn the vector ĝ for
each algorithm from a training set of images as the mean
of the unit-vectors corresponding to the pixel or edge av-
erages of each image. We use three-fold cross validation
for this training, and to pick the optimal smoothing and
norm parameters for grey edge as described in [24].

4.2 Results

Table 1 reports the mean and median errors for all
algorithms, as well as the Worst-25% error which is a
measure of robustness and refers to the mean of the 25%
highest error values (note that these may correspond to
different images for different methods). These quantiles
are reported for the entire database, as well as separately
for the indoor and outdoor sets. Figures 6 and 7 show

TABLE 2
Sign test results on the “Color checker” database [6]
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1 2 3 4 5 6 7 8 9
1 0 -1 -1 -1 -1 0 -1 -1 -1
2 1 0 -1 -1 -1 0 -1 -1 -1
3 1 1 0 -1 -1 1 -1 -1 -1
4 1 1 1 0 0 1 0 -1 -1
5 1 1 1 0 0 1 -1 -1 -1
6 0 0 -1 -1 -1 0 -1 -1 -1
7 1 1 1 0 1 1 0 -1 -1
8 1 1 1 1 1 1 1 0 -1
9 1 1 1 1 1 1 1 1 0

Value at Interpretation at 95% confidence level
(row i, column j)

1 Algorithm i tends to have lower errors
-1 Algorithm j tends to have lower errors
0 No significant difference

examples, of indoor and outdoor images respectively,
corrected according to the illuminant estimates of vari-
ous methods. Table 2 shows results of a sign test [26], [27]
comparing the performance of every pair of algorithms
over the entire database. This test determines whether
one algorithm tends to have lower errors compared to
another, by using significance testing to reject the null
hypothesis that P (erri > errj) = P (errj > erri), where
erri and errj denote angular errors from two algorithms
i and j on a random image. Note that the sign test is
based on only the sign of the difference in errors for
each image, not the magnitude.

We first look at the relative performance of the ML
estimator, without any prior information. The sign test
results indicate that it typically has lower errors in com-
parison to most of the state of the art methods over the
entire database. The only exception is traditional gamut-
mapping which has higher errors than the proposed

http://vision.seas.harvard.edu/colorconstancy/
http://vision.seas.harvard.edu/colorconstancy/
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Input Grey World (9.3◦) Grey Edge (3.0◦) Gen. Gamut (6.2◦)

Rosenberg (4.2◦) Proposed (1.8◦) With general prior (2.0◦) With indoor prior (3.8◦)

Input Grey World (0.9◦) Grey Edge (0.5◦) Gen. Gamut (18.5◦)

Rosenberg (15.8◦) Proposed (1.5◦) With general prior (1.1◦) With indoor prior (0.7◦)

Input Grey World (6.5◦) Grey Edge (3.5◦) Gen. Gamut (4.8◦)

Rosenberg (4.7◦) Proposed (2.8◦) With general prior (2.8◦) With indoor prior (2.6◦)

Fig. 6. Indoor images from the color checker database, corrected using different algorithms. Angular errors for
estimated illuminant are indicated below each image.

method on a majority of the images, but by a margin
too small to be statistically significant. We also find that
the ML estimates have lower mean and worst-25% error
values amongst all state of the art methods. Both gamut-
based methods have lower median errors, largely due
to their superior performance on the outdoor images
that were captured in daylight. They have the lowest

mean and median errors for those images, although the
proposed ML estimator appears to be more robust with
a lower worst-25% error. However, the gamut-based
methods perform worse on indoor images and have
the highest error quantiles on that set after Rosenberg.
In general, all algorithms show poorer performance on
the indoor set than on outdoor images, indicating that
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Input Grey World (2.5◦) Grey Edge (2.7◦) Gen. Gamut (1.3◦)

Rosenberg (2.9◦) Proposed (1.4◦) With general prior (1.5◦) With outdoor prior (1.4◦)

Input Grey World (2.5◦) Grey Edge (5.3◦) Gen. Gamut (5.5◦)

Rosenberg (6.9◦) Proposed (4.4◦) With general prior (4.1◦) With outdoor prior (3.6◦)

Input Grey World (5.7◦) Grey Edge (2.0◦) Gen. Gamut (2.4◦)

Rosenberg (1.9◦) Proposed (3.2◦) With general prior (2.7◦) With outdoor prior (1.9◦)

Fig. 7. Outdoor images from the color checker database, corrected using different algorithms. Angular errors for
estimated illuminant are indicated below each image.

indoor scenes are more likely to contain regions that
act as outliers. However, the ML estimator performs
noticeably better than the state of the art, with the lowest
values for all error quantiles on indoor images.

Next, we note that an illuminant prior, even a general
one over all images, results in better performance. The
sign test shows that the prior leads to a statistically

significant improvement in comparison to the ML es-
timator, and errors are now likely to be lower than for
all other methods, including gamut mapping. However,
note that while there is an overall improvement in
accuracy, estimation errors on individual images may
increase as is the case for some examples in Figs. 6-7. In
Table 1, we see that the most significant improvement is
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TABLE 3
Performance of grey edge and proposed method on the
“Color checker” database [6], with both using the same

set of second-derivative Gaussian filters with σ = 1

Mean Median Worst-25%

Grey Edge 4.0◦ 3.4◦ 7.8◦

Proposed (ML Estimate) 3.9◦ 3.2◦ 7.7◦

Proposed (with gen. prior) 3.7◦ 3.0◦ 7.5◦

to the worst-25% quantile for all sets, indicating that the
prior’s major contribution is in making the estimation
process more robust.

When the illuminant prior is defined separately over
sets of indoor and outdoor images (and it is possible
that these labels may be obtained during estimation
from a light-meter on the camera or a scene-classification
algorithm), the improvement in overall performance is
dramatic. We note that most of this improvement is on
the outdoor images, which is likely because of relatively
less variability in the set of daylight illuminants.

While the spatio-spectral model allows a natural way
to combine cues across sub-bands at multiple scales,
we seek to gauge how well the proposed estimator
succeeds at exploiting the information in each sub-band.
Therefore, we perform a more direct comparison of our
method to the grey edge algorithm, by restricting the
former to work on the same set of coefficients as the
latter. Table 3 shows the error quantiles of the two meth-
ods (over all images) when both use second-derivative
Gaussian filters at scale σ = 1, which corresponds to
the best choice for grey edge. We find that the pro-
posed method yields better estimates even when not
using an illuminant prior, and appears to benefit from
accurately modeling the statistical structure of sub-band
coefficients.

4.3 Evaluation with Other Databases
Finally, we report performance on two older datasets
considered in [24]. The first is a large set of real-world
scenes captured by a consumer video camera [28], and
the second is a relatively small set of objects captured
under various illuminants in laboratory conditions [29].
We use the evaluation results from [24] as an indicator of
the performance of state-of-the-art methods, but again,
we differ in applying the learning step to grey world
and grey edge, as described in Sec. 4.1.

The “Grey Ball” database [28] is a collection of 11346
images captured using a video camera. A diffuse grey
sphere is attached to the camera and is present at the
same location in all images, providing a ground truth es-
timate of the illuminant. The original database includes
gamma-corrected images, and we follow the procedure
in [24] by measuring performance after applying inverse
gamma-correction to the images and recomputing the
ground truth accordingly. We also adopt the approach
suggested in [24] for cross-validation: since the database

TABLE 4
Performance of various methods on “Grey Ball” set [28]

Mean Median Worst 25%

Grey World [1] 12.2◦ 9.7◦ 25.4◦

Grey Edge (1st Order) [7] 10.8◦ 9.2◦ 20.9◦

Grey Edge (2nd Order) [7] 11.4◦ 9.9◦ 21.5◦

Gamut Mapping [3] 11.8◦ 8.9◦ 24.9◦

Generalized Gamut Mapping [8] 11.8◦ 8.9◦ 24.9◦

Proposed (ML Estimate) 10.3◦ 8.9◦ 20.3◦

is divided into 15 videos, we carry out estimation on
the frames of each video using using the remaining
videos as training. Table 4 shows error quantiles of the
proposed method and compares them to those of other
algorithms. Note that we only report errors for the ML
estimator, since the prior-based estimates have identical
error quantiles.

Like with the color checker database [6], we find that
the proposed method yields more accurate estimates
than other algorithms. However, results on this database
should be interpreted with caution as the images are
lower in quality, with possible artifacts from compres-
sion and the approximate inverse-gamma map. Further,
the ground truth information may be unreliable in some
cases because the grey ball is close to the camera and can
be lit by an illuminant that is different from the dominant
illuminant of the scene.

We also report results on the “SFU laboratory”
database [29], which consists of 321 images of 31 dif-
ferent objects captured under different illuminants in a
laboratory. For training, we take the approach suggested
in [24] and fit model parameters to the images of all 31
objects captured under illuminant syl-50MR16Q before
using these parameters to measure estimation accuracy
on the entire database. Note that this means the training
and testing images overlap. Further, since the training
set contains all objects that appear in the database,
albeit under different illuminants, this training scheme
may be prone to overfitting. Finally, since the training
data contains only one unique illuminant, we can only
evaluate the maximum likelihood version of our method,
which does not make use of a prior over illuminants.

We report error quantiles for various methods on this
database in Table 5. We find that the proposed method
performs better than grey world and first-order grey
edge. It has a higher mean error and median error than
second-order grey edge, but it appears to be more robust
with a lower worst-25% error.

Interestingly, the gamut mapping methods perform
the best with significantly lower error quantiles. One
possible explanation is that object-scale images tend
to have a smaller number of independent samples of
pixels/coefficients than scene-scale images, so that mod-
eling the support (or convex hull) of the observed set
is more robust than attempting to describe and exploit
its distribution, as done by grey world, grey edge and
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TABLE 5
Performance of various methods on “SFU Lab” set [29]

Mean Median Worst 25%

Grey World [1] 8.8◦ 5.6◦ 20.7◦

Grey Edge (1st Order) [7] 6.6◦ 4.3◦ 15.6◦

Grey Edge (2nd Order) [7] 5.1◦ 2.5◦ 13.6◦

Gamut Mapping (σ = 4) [3] 3.7◦ 2.3◦ 9.3◦

Gen. Gamut (σ = 4,2-jet) [8] 3.6◦ 2.1◦ 9.4◦

Proposed (ML Estimate) 5.6◦ 3.5◦ 12.9◦

the proposed algorithm. However, drawing strong con-
clusions from images of only thirty-one distinct objects
would be premature. Since they learn a larger number
of parameters and are trained on the entire set of re-
flectances that occur in the database, it is also possible
that the gamut mapping methods are simply over-fitting
to the convex hull of this small object set.

5 CONCLUSION
In this work, we describe an effective way to exploit spa-
tial dependencies among pixels in a color image for the
color constancy problem. We model these dependencies
by first decomposing the image using a set of spatially-
decorrelating filters, and then analyzing the statistics
of their coefficients. These color coefficients are better-
behaved than colors of individual pixels, and they enable
color constancy techniques that are quite accurate and
efficient. When no prior information about the illumi-
nant is available, it can be estimated in a maximum
likelihood framework; and for cases when one has prior
illuminant information, we introduce a prior model that
can be incorporated during estimation.

Interesting directions for future work include relaxing
the two main assumptions made in this work: spatially-
constant illuminant spectrum and diagonal transforms
for chromatic adaptation. Even when there is a single
illuminant in the scene, mutual illumination causes the
effective illuminant spectrum to vary from point to point.
A first step that could lead to improvement would be to
remove regions that appear to be outliers to the general
statistics of the image, in the hope that these are likely
to correspond to areas with significant inter-reflections.
Alternatively, one could explore variants of the proposed
method that assume the scene to be lit by a mixture of
n illuminants. The problem would then be to estimate
which parts of the image are lit by which illuminant, as
well the color of each of these illuminants.

It would be interesting to explore avenues to use
the spatio-spectral model introduced here to go beyond
diagonal transforms. One path is to estimate general
linear transforms under appropriate constraints. Another
is to consider a set of registered training images taken
under different illuminants, and then learn the functional
form of the map between corresponding pixels. The
parameters of this map can then be estimated from a
test image to do color constancy.

Another challenge is to adapt this method for appli-
cations that need color constancy to work on images
captured using consumer digital cameras that do not
provide linear (RAW) image data. In this work, we have
assumed that training and testing are performed with
images taken from the same or similar cameras. This is
important, because as shown in [30], the color spaces
and non-linear processing done in cameras can vary
significantly, affecting both the sub-band statistics and
the illuminant statistics in Q. Saenko et al. [31] look at
the problem of adapting visual category models learned
from one camera to another. It would be interesting
to investigate whether the same can be done for color
constancy in a way that would allow training data from
one camera or linear images to be adapted to a new
domain, with minimal additional information.

Finally, we note that computational color constancy
algorithms are often motivated by observations from
the human visual system [2], [32]. The relative suc-
cess of this method therefore naturally raises questions
about whether the human visual system employs related
processing for adaptation and color constancy. Indeed,
psychophysical experiments have shown a strong inter-
action between the spatial orientation and frequency of
a stimulus and the chromatic adaptation it induces [33],
[34]. The mechanisms that govern these interactions are
poorly understood [33], and the machinery developed
in this paper might be useful in creating experiments to
analyze them further. Separate experiments have linked
the textures of familiar objects to human color percep-
tion [35], [36], and while texture is currently thought
to affect color perception through object memory, it is
worth exploring the contribution of spatial correlations
to this effect.
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