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Abstract—In this report, we describe a fast deconvolution approach
for color images that combines a sparse regularization cost on the
magnitudes of gradients with constraints on their direction in color
space. We form these color constraints in a way that allows retaining
the computationally-efficient optimization strategy introduced in recent
deconvolution methods based on half-quadratic splitting. The proposed
algorithm is capable of handling a different blur kernel in each color
channel, and is used for per-layer deconvolution in our paper: “Depth
and Deblurring from a Spectrally-varying Depth-of-Field” [1]. A MATLAB
implementation of this method is available at http://vision.seas.harvard.
edu/ccap, and takes roughly 20 seconds to deconvolve a three-channel
1544× 1028 color image, on a Linux-based Intel I-3 2.1GHz machine.

1 INTRODUCTION

Non-blind deconvolution refers to the recovery of a sharp
image x(n) from a blurred and noisy observation y(n):

y(n) = (x ∗ k)(n) + ε(n), (1)

where the blur kernel k is known, and ε(n) is typically assumed
to be white Gaussian noise. A regularized estimation approach
recovers the sharp image x(n) as

x(n) = arg min
x

µ

2

∑
n

[y(n)− (x ∗ k)(n)]2 + Φ(x), (2)

where the first term measures fidelity to the observation, Φ(x)
is a regularization cost based on statistical properties of sharp
natural images, and µ is the relative weight between the two.

A common choice for Φ(x) is a smoothness cost that dis-
courages discontinuities in the sharp image x by penalizing
gradient magnitudes [2], [3], [4] as

Φ(x) =
∑
∇∈G

∑
n

|x∇(n)|α , (3)

where α ≥ 0, G is a set of gradient filters, and x∇(n) = (∇ ∗
x)(n). For α = 2, the solution for (2) has a closed form that
can be computed efficiently in the Fourier domain. However,
such a squared cost prefers to distribute gradients equally over
the recovered image [2], and based on the choice of µ, yields
images that are either over-smoothed, or have ringing artifacts.

It is generally understood that a choice of α ∈ (0, 1] corre-
sponds better to the distribution of gradients in natural images,
and yields solutions with sharper edges where gradients are
concentrated at a sparse set of pixels. Unfortunately, these
values of α do not admit closed-form solutions and require an
iterative approach for deconvolution. Levin et al. [2] propose
such an approach based on iterative re-weighted least squares
(IRLS), where at each iteration the regularizer is approximated
with a weighted squared cost with weights based on the
current estimate of x. Unfortunately with spatially-varying
weights, deconvolution with the approximated squared cost

can not be carried out in the Fourier domain, and the solution
at each iteration must in turn be computed iteratively using
the conjugate-gradient method.

Recent work [3], [4] demonstrates that one can solve (2) for
α < 2 with greater efficiency using an optimization approach
based on half-quadratic splitting (which we describe in de-
tail in Sec. 2.1). These algorithms involve iterating between
per-pixel shrinkage operations on gradients, and deconvolu-
tion in the Fourier domain. A comparison in [4] shows that
this approach is about 400 times faster than IRLS on large
“megapixel” images (i.e., those with a resolution greater than
1024× 1024). In this work, we extend the half-quadratic split-
ting approach to include color constraints on gradients in the
sharp image x in a way that yields improved results, with
roughly the same computational cost.

1.1 Color-based Regularization

The regularization schemes discussed above are defined exclu-
sively in terms of single-channel image statistics, and ignore
color information. Recently, Joshi et al. [5] demonstrated that
higher quality results can be obtained by using color statistics
during deconvolution, even for the case when the blur kernel
is spectrally uniform. Color models are even more beneficial
in the context of deconvolution in our work in [1], where
each color channel is blurred with a different kernel. In this
case, observed artifacts from independent deconvolution of
color channels correspond to different spatial frequencies in
the different channels, and can lead to the creation of spurious
chromaticities in the estimated image. Conversely, by incor-
porating color statistics, one can exploit the fact the observed
image contain complementary spatial frequency information in
the different channels.

The color-based regularization introduced in [5] is defined in
terms of pixel-domain statistics in local neighborhoods, and the
corresponding estimation algorithm is developed in the IRLS
framework. In this work, we aim to incorporate color statistics
in a way that admits use of the fast deconvolution framework
of [3], [4]. We reason that with a high weight on the regularizer
during estimation, we recover an image Xs that is excessively
smoothed but has fewer artifacts due to noise, and can be
considered to be a blurred version of the true sharp image
X . We use a squared-cost with a low value of µ to estimate
this over-regularized estimate Xs in closed-form.

Then, we draw on intuition from the spatio-spectral model
in [1] that gradients in local neighborhoods have the same
color direction, i.e., they lie on the same line in color space.
This means that gradients in Xs, being local averages of the
true gradients, are likely to lie on the same color line as
those in X , albeit with attenuated magnitudes. Our strategy
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is to use the gradient colors from Xs as additional constraints
while estimating X with a traditional sparse regularization cost
on gradient magnitudes. We find that this simple approach
achieves performance comparable to that of the color IRLS-
based method in [5], at a fraction of the computational cost.

2 PROPOSED METHOD

We consider the general case where each color channel y{i}(n)
of Y (n), i ∈ {R,G,B} is blurred with a different kernel k{i}.
We first generate an over-regularized estimate Xs of X with a
squared cost and µs = 0.5 as:

x{i}s = arg min
x

µs
2

∑
n

[
y{i}(n)− (x ∗ k{i})(n)

]2
+

∑
∇∈G

∑
n

|x∇(n)|2 , (4)

where the set G contains two gradient filters corresponding
to vertical and horizontal finite-differences. This can be solved
directly in the Fourier domain as:

x{i}s = F−1

[
µsF [k{i}]

∗
F [y{i}]∑

∇ |F [∇]|2 + µs|F [k{i}]|2

]
, (5)

where F and F−1 refer to the 2D Fourier transform and its
inverse. Note that this Fourier-domain formulation is based
on a periodic-extension assumption on the image. To prevent
ringing from sharp discontinuities between pixels at opposite
boundaries, we extend the observed image Y (n) by padding
it with values that smoothly blend these discontinuities. These
extended regions are discarded after deconvolution to yield a
result with the original resolution.
Xs(n) serves as the reference for gradient colors in the final

estimate X . For notational convenience, we define X∇(n) as a
color-gradient vector of X(n) as:

X∇(n) =
[
x
{R}
∇ (n), x

{G}
∇ (n), x

{B}
∇ (n)

]
, (6)

and the gradient color unit-vectors V̂∇(n) from Xs as

V̂∇(n) = Xs∇(n)/‖Xs∇(n)‖. (7)

The final sharp image is then recovered as

X = arg min
X

µ

2

∑
n,i

[
y{i}(n)− (x{i} ∗ k{i})(n)

]2
+

∑
∇∈G

∑
n

|〈X∇(n), V̂∇(n)〉|α, (8)

with the constraint that X∇(n) ∝ V̂∇(n), ∀n. We use α = 2/3,
and set µ based on the noise level in the observed image (µ =
104 for all results reported in [1]).

2.1 Half-quadratic Splitting

To solve the optimization problem in (8), we closely follow the
approach in [4] and introduce a new cost-function:

C(X(n),W∇(n), β)=
µ

2

∑
n,i

[
y{i}(n)− (x{i} ∗ k{i})(n)

]2
+
β

2

∑
∇,n

‖W∇(n)−X∇(n)‖2

+
∑
∇,n

|〈W∇(n), V̂∇(n)〉|α, (9)

Fig. 1. Gradient magnitude “shrinkage” function for α = 2/3 and
different values of β. We show the true function, as well as the
thresholded-linear approximation used in our implementation.

where W∇(n) are auxiliary variables constrained to lie along
V̂∇(n). The solution to (8) is then derived using an iterative
algorithm that alternately updates X and W∇(n) to minimize
C(·), starting with Xs as the initial estimate for X . The
parameter β is increased after each round of updates to W∇
and X , by a factor of 4 in our implementation. We ensure that
the iterations end with β = 100µ, and find 8 iterations to be
sufficient for convergence.

Updating X : Given the current estimates of W∇(n), X is
updated to minimize the first two terms of (9) as

x{i} = F−1

[∑
∇ F [∇]

∗
F [w

{i}
∇ [n]] + µ/βF [k{i}]

∗
F [y{i}]∑

∇ |F [∇]|2 + µ/β|F [k{i}]|2

]
.

(10)
Note that this update requires only one forward and one
inverse Fourier transform per channel at each iteration, since
the second term of the numerator needs to be only computed
once for an input image, and the two terms of the denominator
can be pre-computed with knowledge of the kernels and the
resolution of Y (n).

Updating W∇: Correspondingly, each of the auxiliary variables
W∇(n) can be independently updated based on the current
estimate of X(n), to minimize the latter two terms of (9) and
satisfy the color-direction constraint as:

(Project) r = 〈X∇(n), V̂∇(n)〉, (11)

(Shrink) s = arg min
s
|s|α +

β

2
|s− r|2, (12)

W∇(n) = s V̂∇(n). (13)

Krishnan and Fergus [4] describe an analytical solution for (12)
when α = 2/3, as well as a faster look-up table-based approach.
As illustrated in Fig. 1, we find that the relationship between
|s| and |r| can be well approximated by a thresholded-linear
function (for each value of β). We use this approximation in
our implementation since it is faster to compute, and find that
it gives near identical results as the analytical solution.

3 COMPARISONS

The proposed algorithm is used to generate all the deblurred
results in [1]. In Fig. 2, we show a close-up of one of these
results as well as a comparison to the deblurred image that
would have been recovered using the baseline greyscale half-
splitting algorithm [4], with the same value of α. The latter
essentially corresponds to deconvolving each color channel
independently, and while the two approaches have nearly iden-
tical running times, the addition of color-gradient constraints
removes spurious chromatic effects caused by ringing artifacts
at different spatial frequencies in different color channels.
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Independent per-channel deconvolution Deconvolution with color constraints

Fig. 2. Comparison of deconvolution with and without color constraints, for a real captured image from [1]. We see that adding
color constraints removes various spurious colors (near the eyes and mouth) that appear in the case of independent per-channel
deconvolution.

O
bs

er
ve

d
Im

ag
e

Jo
sh

i
et

al
.[

5]

PSNR: 23.52 dB PSNR: 24.81 dB PSNR: 24.83 dB PSNR: 28.90 dB
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PSNR: 23.76 dB PSNR: 24.85 dB PSNR: 24.93 dB PSNR: 28.78 dB

Fig. 3. Comparison to results reported in [5], for a spectrally-uniform kernel. Despite being significantly less expensive
computationally, the proposed algorithm yields results with similar quality to the color ILRS-based method of Joshi et al. [5].

We next show results on images from the Berkeley seg-
mentation database [6], that were synthetically blurred with
a spectrally-uniform kernel and used for evaluation in [5].
Figure 3 compares the deconvolution results from our method
to those reported for the color IRLS-based approach of [5],
with PSNR values for both. The proposed method is found to
have equivalent performance to [5], while offering a substantial
advantage in terms of computational efficiency.
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